Implements quadrature rules for non-tensor polynomials. More...
#include <quadrature_monomial.h>
Public Member Functions | |
QMonomial (unsigned int dim, Order order=INVALID_ORDER) | |
QMonomial (const QMonomial &)=default | |
QMonomial (QMonomial &&)=default | |
QMonomial & | operator= (const QMonomial &)=default |
QMonomial & | operator= (QMonomial &&)=default |
virtual | ~QMonomial ()=default |
virtual QuadratureType | type () const override |
ElemType | get_elem_type () const |
unsigned int | get_p_level () const |
unsigned int | n_points () const |
unsigned int | get_dim () const |
const std::vector< Point > & | get_points () const |
std::vector< Point > & | get_points () |
const std::vector< Real > & | get_weights () const |
std::vector< Real > & | get_weights () |
Point | qp (const unsigned int i) const |
Real | w (const unsigned int i) const |
virtual void | init (const ElemType type=INVALID_ELEM, unsigned int p_level=0) |
virtual void | init (const Elem &elem, const std::vector< Real > &vertex_distance_func, unsigned int p_level=0) |
Order | get_order () const |
void | print_info (std::ostream &os=libMesh::out) const |
void | scale (std::pair< Real, Real > old_range, std::pair< Real, Real > new_range) |
virtual bool | shapes_need_reinit () |
Static Public Member Functions | |
static std::unique_ptr< QBase > | build (const std::string &name, const unsigned int dim, const Order order=INVALID_ORDER) |
static std::unique_ptr< QBase > | build (const QuadratureType qt, const unsigned int dim, const Order order=INVALID_ORDER) |
static void | print_info (std::ostream &out=libMesh::out) |
static std::string | get_info () |
static unsigned int | n_objects () |
static void | enable_print_counter_info () |
static void | disable_print_counter_info () |
Public Attributes | |
bool | allow_rules_with_negative_weights |
Protected Types | |
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > | Counts |
Protected Member Functions | |
virtual void | init_0D (const ElemType type=INVALID_ELEM, unsigned int p_level=0) |
void | tensor_product_quad (const QBase &q1D) |
void | tensor_product_hex (const QBase &q1D) |
void | tensor_product_prism (const QBase &q1D, const QBase &q2D) |
void | increment_constructor_count (const std::string &name) |
void | increment_destructor_count (const std::string &name) |
Protected Attributes | |
unsigned int | _dim |
Order | _order |
ElemType | _type |
unsigned int | _p_level |
std::vector< Point > | _points |
std::vector< Real > | _weights |
Static Protected Attributes | |
static Counts | _counts |
static Threads::atomic< unsigned int > | _n_objects |
static Threads::spin_mutex | _mutex |
static bool | _enable_print_counter = true |
Private Member Functions | |
virtual void | init_1D (const ElemType, unsigned int=0) override |
virtual void | init_2D (const ElemType _type=INVALID_ELEM, unsigned int p_level=0) override |
virtual void | init_3D (const ElemType _type=INVALID_ELEM, unsigned int p_level=0) override |
void | wissmann_rule (const Real rule_data[][3], const unsigned int n_pts) |
void | stroud_rule (const Real rule_data[][3], const unsigned int *rule_symmetry, const unsigned int n_pts) |
void | kim_rule (const Real rule_data[][4], const unsigned int *rule_id, const unsigned int n_pts) |
Implements quadrature rules for non-tensor polynomials.
This class defines alternate quadrature rules on "tensor-product" elements (quadrilaterals and hexahedra) which can be useful when integrating monomial finite element bases.
While tensor product rules are optimal for integrating bi/tri-linear, bi/tri-quadratic, etc. (i.e. tensor product) bases (which consist of incomplete polynomials up to degree=dim*p) they are not optimal for the MONOMIAL or FEXYZ bases, which consist of complete polynomials of degree=p.
This class provides quadrature rules which are more efficient than tensor product rules when they are available, and falls back on Gaussian quadrature rules otherwise.
A number of these rules have been helpfully collected in electronic form by: Prof. Ronald Cools Katholieke Universiteit Leuven, Dept. Computerwetenschappen http://www.cs.kuleuven.ac.be/~nines/research/ecf/ecf.html A username and password to access the tables is available by request.
We also provide the original reference for each rule when it is available.
Definition at line 58 of file quadrature_monomial.h.
|
protectedinherited |
Data structure to log the information. The log is identified by the class name.
Definition at line 117 of file reference_counter.h.
|
inline |
Constructor. Declares the order of the quadrature rule.
Definition at line 65 of file quadrature_monomial.h.
|
default |
Copy/move ctor, copy/move assignment operator, and destructor are all explicitly defaulted for this simple class.
|
default |
|
virtualdefault |
|
staticinherited |
Builds a specific quadrature rule based on the name
string. This enables selection of the quadrature rule at run-time. The input parameter name
must be mappable through the Utility::string_to_enum<>()
function.
This function allocates memory, therefore a std::unique_ptr<QBase>
is returned so that the user does not accidentally leak it.
Definition at line 40 of file quadrature_build.C.
References libMesh::QBase::_dim, libMesh::QBase::_order, and libMesh::QBase::type().
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule().
|
staticinherited |
Builds a specific quadrature rule based on the QuadratureType. This enables selection of the quadrature rule at run-time.
This function allocates memory, therefore a std::unique_ptr<QBase>
is returned so that the user does not accidentally leak it.
Definition at line 51 of file quadrature_build.C.
References libMesh::QBase::_dim, libMesh::QBase::_order, libMesh::FIRST, libMesh::FORTYTHIRD, libMesh::out, libMesh::QCLOUGH, libMesh::QCONICAL, libMesh::QGAUSS, libMesh::QGAUSS_LOBATTO, libMesh::QGRID, libMesh::QGRUNDMANN_MOLLER, libMesh::QJACOBI_1_0, libMesh::QJACOBI_2_0, libMesh::QMONOMIAL, libMesh::QSIMPSON, libMesh::QTRAP, libMesh::THIRD, and libMesh::TWENTYTHIRD.
|
staticinherited |
Definition at line 106 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter.
Referenced by libMesh::LibMeshInit::LibMeshInit().
|
staticinherited |
Methods to enable/disable the reference counter output from print_info()
Definition at line 100 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter.
|
inlineinherited |
Definition at line 136 of file quadrature.h.
References libMesh::QBase::_dim.
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), and libMesh::QConical::conical_product_tri().
|
inlineinherited |
Definition at line 117 of file quadrature.h.
References libMesh::QBase::_type.
|
staticinherited |
Gets a string containing the reference information.
Definition at line 47 of file reference_counter.C.
References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().
Referenced by libMesh::ReferenceCounter::print_info().
|
inlineinherited |
Definition at line 203 of file quadrature.h.
References libMesh::QBase::_order, and libMesh::QBase::_p_level.
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule().
|
inlineinherited |
Definition at line 122 of file quadrature.h.
References libMesh::QBase::_p_level.
|
inlineinherited |
std::vector
containing the quadrature point locations in reference element space. Definition at line 142 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::QClough::init_1D(), libMesh::QConical::init_1D(), init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGauss::init_3D(), and init_3D().
|
inlineinherited |
std::vector
containing the quadrature point locations in reference element space as a writable reference. Definition at line 148 of file quadrature.h.
References libMesh::QBase::_points.
|
inlineinherited |
std::vector
containing the quadrature weights. Definition at line 154 of file quadrature.h.
References libMesh::QBase::_weights.
Referenced by libMesh::QClough::init_1D(), libMesh::QConical::init_1D(), init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGauss::init_3D(), and init_3D().
|
inlineinherited |
std::vector
containing the quadrature weights. Definition at line 160 of file quadrature.h.
References libMesh::QBase::_weights.
|
inlineprotectedinherited |
Increments the construction counter. Should be called in the constructor of any derived class that will be reference counted.
Definition at line 181 of file reference_counter.h.
References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.
Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().
|
inlineprotectedinherited |
Increments the destruction counter. Should be called in the destructor of any derived class that will be reference counted.
Definition at line 194 of file reference_counter.h.
References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.
Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().
|
virtualinherited |
Initializes the data structures for a quadrature rule for an element of type type
.
Definition at line 28 of file quadrature.C.
References libMesh::QBase::_dim, libMesh::QBase::_p_level, libMesh::QBase::_type, libMesh::QBase::init_0D(), libMesh::QBase::init_1D(), libMesh::QBase::init_2D(), and libMesh::QBase::init_3D().
Referenced by libMesh::QBase::init(), libMesh::QClough::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QGaussLobatto::init_2D(), libMesh::QGrid::init_2D(), libMesh::QTrap::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), init_3D(), libMesh::QGauss::QGauss(), libMesh::QGaussLobatto::QGaussLobatto(), libMesh::QJacobi::QJacobi(), libMesh::QSimpson::QSimpson(), and libMesh::QTrap::QTrap().
|
virtualinherited |
Initializes the data structures for an element potentially "cut" by a signed distance function. The array vertex_distance_func
contains vertex values of the signed distance function. If the signed distance function changes sign on the vertices, then the element is considered to be cut.) This interface can be extended by derived classes in order to subdivide the element and construct a composite quadrature rule.
Definition at line 72 of file quadrature.C.
References libMesh::QBase::init(), and libMesh::Elem::type().
|
protectedvirtualinherited |
Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate values. Generally this is just one point with weight 1.
Definition at line 82 of file quadrature.C.
References libMesh::QBase::_points, and libMesh::QBase::_weights.
Referenced by libMesh::QBase::init().
|
overrideprivatevirtual |
Just uses a Gauss rule in 1D.
Implements libMesh::QBase.
Definition at line 29 of file quadrature_monomial_1D.C.
References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::get_points(), libMesh::QBase::get_weights(), and libMesh::QBase::init().
|
overrideprivatevirtual |
More efficient rules for quadrilaterals.
Reimplemented from libMesh::QBase.
Definition at line 28 of file quadrature_monomial_2D.C.
References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_weights, data, libMesh::EIGHTH, libMesh::ELEVENTH, libMesh::FIFTEENTH, libMesh::FIFTH, libMesh::FOURTEENTH, libMesh::FOURTH, libMesh::QBase::get_points(), libMesh::QBase::get_weights(), libMesh::QBase::init(), libMesh::NINTH, libMesh::QUAD4, libMesh::QUAD8, libMesh::QUAD9, libMesh::QUADSHELL4, libMesh::QUADSHELL8, libMesh::Real, libMesh::SECOND, libMesh::SEVENTEENTH, libMesh::SEVENTH, libMesh::SIXTEENTH, libMesh::SIXTH, stroud_rule(), libMesh::TENTH, libMesh::THIRTEENTH, libMesh::TWELFTH, and wissmann_rule().
|
overrideprivatevirtual |
More efficient rules for hexahedra.
Reimplemented from libMesh::QBase.
Definition at line 28 of file quadrature_monomial_3D.C.
References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_weights, A, libMesh::QBase::allow_rules_with_negative_weights, data, libMesh::EIGHTH, libMesh::FIFTH, libMesh::FOURTH, libMesh::QBase::get_points(), libMesh::QBase::get_weights(), libMesh::HEX20, libMesh::HEX27, libMesh::HEX8, libMesh::QBase::init(), kim_rule(), libMesh::Real, libMesh::SECOND, libMesh::SEVENTH, libMesh::SIXTH, and libMesh::THIRD.
|
private |
Rules from Kim and Song, Comm. Korean Math. Soc vol. 13, no. 4, 1998, pp. 913-931. The rules are obtained by considering the group G^{rot} of rotations of the reference hex, and the invariant polynomials of this group.
In Kim and Song's rules, quadrature points are described by the following points and their unique permutations under the G^{rot} group:
0.) (0,0,0) ( 1 perm ) -> [0, 0, 0] 1.) (x,0,0) ( 6 perms) -> [x, 0, 0], [0, -x, 0], [-x, 0, 0], [0, x, 0], [0, 0, -x], [0, 0, x] 2.) (x,x,0) (12 perms) -> [x, x, 0], [x, -x, 0], [-x, -x, 0], [-x, x, 0], [x, 0, -x], [x, 0, x], [0, x, -x], [0, x, x], [0, -x, -x], [-x, 0, -x], [0, -x, x], [-x, 0, x] 3.) (x,y,0) (24 perms) -> [x, y, 0], [y, -x, 0], [-x, -y, 0], [-y, x, 0], [x, 0, -y], [x, -y, 0], [x, 0, y], [0, y, -x], [-x, y, 0], [0, y, x], [y, 0, -x], [0, -y, -x], [-y, 0, -x], [y, x, 0], [-y, -x, 0], [y, 0, x], [0, -y, x], [-y, 0, x], [-x, 0, y], [0, -x, -y], [0, -x, y], [-x, 0, -y], [0, x, y], [0, x, -y] 4.) (x,x,x) ( 8 perms) -> [x, x, x], [x, -x, x], [-x, -x, x], [-x, x, x], [x, x, -x], [x, -x, -x], [-x, x, -x], [-x, -x, -x] 5.) (x,x,z) (24 perms) -> [x, x, z], [x, -x, z], [-x, -x, z], [-x, x, z], [x, z, -x], [x, -x, -z], [x, -z, x], [z, x, -x], [-x, x, -z], [-z, x, x], [x, -z, -x], [-z, -x, -x], [-x, z, -x], [x, x, -z], [-x, -x, -z], [x, z, x], [z, -x, x], [-x, -z, x], [-x, z, x], [z, -x, -x], [-z, -x, x], [-x, -z, -x], [z, x, x], [-z, x, -x] 6.) (x,y,z) (24 perms) -> [x, y, z], [y, -x, z], [-x, -y, z], [-y, x, z], [x, z, -y], [x, -y, -z], [x, -z, y], [z, y, -x], [-x, y, -z], [-z, y, x], [y, -z, -x], [-z, -y, -x], [-y, z, -x], [y, x, -z], [-y, -x, -z], [y, z, x], [z, -y, x], [-y, -z, x], [-x, z, y], [z, -x, -y], [-z, -x, y], [-x, -z, -y], [z, x, y], [-z, x, -y]
Only two of Kim and Song's rules are particularly useful for FEM calculations: the degree 7, 38-point rule and their degree 8, 47-point rule. The others either contain negative weights or points outside the reference interval. The points and weights, to 32 digits, were obtained from: Ronald Cools' website (http://www.cs.kuleuven.ac.be/~nines/research/ecf/ecf.html) and the unique permutations of G^{rot} were computed by me [JWP] using Maple.
Definition at line 205 of file quadrature_monomial.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, and libMesh::Real.
Referenced by init_3D().
|
inlinestaticinherited |
Prints the number of outstanding (created, but not yet destroyed) objects.
Definition at line 83 of file reference_counter.h.
References libMesh::ReferenceCounter::_n_objects.
|
inlineinherited |
Definition at line 127 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::ExactSolution::_compute_error(), libMesh::System::calculate_norm(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::print_info(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
staticinherited |
Prints the reference information, by default to libMesh::out
.
Definition at line 87 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().
|
inlineinherited |
Prints information relevant to the quadrature rule, by default to libMesh::out.
Definition at line 378 of file quadrature.h.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), and libMesh::Real.
Referenced by libMesh::operator<<().
|
inlineinherited |
Definition at line 165 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
inherited |
Maps the points of a 1D quadrature rule defined by "old_range" to another 1D interval defined by "new_range" and scales the weights accordingly.
Definition at line 93 of file quadrature.C.
References libMesh::QBase::_dim, libMesh::QBase::_points, libMesh::QBase::_weights, and libMesh::Real.
Referenced by libMesh::QConical::conical_product_tet(), and libMesh::QConical::conical_product_tri().
|
inlinevirtualinherited |
true
if the shape functions need to be recalculated, false
otherwise.This may be required if the number of quadrature points or their position changes.
Definition at line 231 of file quadrature.h.
|
private |
Stroud's rules for quads and hexes can have one of several different types of symmetry. The rule_symmetry array describes how the different lines of the rule_data array are to be applied. The different rule_symmetry possibilities are: 0) Origin or single-point: (x,y) Fully-symmetric, 3 cases: 1) (x,y) -> (x,y), (-x,y), (x,-y), (-x,-y) (y,x), (-y,x), (y,-x), (-y,-x) 2) (x,x) -> (x,x), (-x,x), (x,-x), (-x,-x) 3) (x,0) -> (x,0), (-x,0), (0, x), ( 0,-x) 4) Rotational Invariant, (x,y) -> (x,y), (-x,-y), (-y, x), (y,-x) 5) Partial Symmetry, (x,y) -> (x,y), (-x, y) [x!=0] 6) Rectangular Symmetry, (x,y) -> (x,y), (-x, y), (-x,-y), (x,-y) 7) Central Symmetry, (0,y) -> (0,y), ( 0,-y)
Not all rules with these symmetries are due to Stroud, however, his book is probably the most frequently-cited compendium of quadrature rules and later authors certainly built upon his work.
Definition at line 57 of file quadrature_monomial.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, and libMesh::Real.
Referenced by init_2D().
|
protectedinherited |
Computes the tensor product quadrature rule [q1D x q1D x q1D] from the 1D rule q1D. Used in the init_3D routines for hexahedral element types.
Definition at line 154 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGaussLobatto::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGauss::init_3D().
|
protectedinherited |
Computes the tensor product of a 1D quadrature rule and a 2D quadrature rule. Used in the init_3D routines for prismatic element types.
Definition at line 181 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGauss::init_3D().
|
protectedinherited |
Constructs a 2D rule from the tensor product of q1D
with itself. Used in the init_2D()
routines for quadrilateral element types.
Definition at line 127 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGaussLobatto::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QSimpson::init_2D(), and libMesh::QGauss::init_2D().
|
overridevirtual |
QMONOMIAL
. Implements libMesh::QBase.
Definition at line 32 of file quadrature_monomial.C.
References libMesh::QMONOMIAL.
|
inlineinherited |
Definition at line 174 of file quadrature.h.
References libMesh::QBase::_weights.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
private |
Wissmann published three interesting "partially symmetric" rules for integrating degree 4, 6, and 8 polynomials exactly on QUADs. These rules have all positive weights, all points inside the reference element, and have fewer points than tensor-product rules of equivalent order, making them superior to those rules for monomial bases.
J. W. Wissman and T. Becker, Partially symmetric cubature formulas for even degrees of exactness, SIAM J. Numer. Anal. 23 (1986), 676–685.
Definition at line 37 of file quadrature_monomial.C.
References libMesh::QBase::_points, and libMesh::QBase::_weights.
Referenced by init_2D().
|
staticprotectedinherited |
Actually holds the data.
Definition at line 122 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::get_info(), libMesh::ReferenceCounter::increment_constructor_count(), and libMesh::ReferenceCounter::increment_destructor_count().
|
protectedinherited |
The spatial dimension of the quadrature rule.
Definition at line 325 of file quadrature.h.
Referenced by libMesh::QBase::build(), libMesh::QBase::get_dim(), libMesh::QBase::init(), libMesh::QGaussLobatto::QGaussLobatto(), libMesh::QJacobi::QJacobi(), libMesh::QSimpson::QSimpson(), libMesh::QTrap::QTrap(), and libMesh::QBase::scale().
|
staticprotectedinherited |
Flag to control whether reference count information is printed when print_info is called.
Definition at line 141 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().
|
staticprotectedinherited |
Mutual exclusion object to enable thread-safe reference counting.
Definition at line 135 of file reference_counter.h.
|
staticprotectedinherited |
The number of objects. Print the reference count information when the number returns to 0.
Definition at line 130 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().
|
protectedinherited |
The polynomial order which the quadrature rule is capable of integrating exactly.
Definition at line 331 of file quadrature.h.
Referenced by libMesh::QBase::build(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::get_order(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QGrid::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QClough::init_2D(), libMesh::QGaussLobatto::init_2D(), libMesh::QGrid::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGrundmann_Moller::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QGrid::init_3D(), libMesh::QGauss::init_3D(), init_3D(), and libMesh::QGrundmann_Moller::init_3D().
|
protectedinherited |
The p-level of the element for which the current values have been computed.
Definition at line 343 of file quadrature.h.
Referenced by libMesh::QBase::get_order(), libMesh::QBase::get_p_level(), and libMesh::QBase::init().
|
protectedinherited |
The locations of the quadrature points in reference element space.
Definition at line 349 of file quadrature.h.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_points(), libMesh::QGrundmann_Moller::gm_rule(), libMesh::QBase::init_0D(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QClough::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QGauss::init_2D(), init_2D(), libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGauss::init_3D(), libMesh::QSimpson::init_3D(), init_3D(), libMesh::QGrundmann_Moller::init_3D(), libMesh::QGauss::keast_rule(), kim_rule(), libMesh::QBase::n_points(), libMesh::QBase::print_info(), libMesh::QBase::qp(), libMesh::QBase::scale(), stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and wissmann_rule().
|
protectedinherited |
The type of element for which the current values have been computed.
Definition at line 337 of file quadrature.h.
Referenced by libMesh::QBase::get_elem_type(), and libMesh::QBase::init().
|
protectedinherited |
The quadrature weights. The order of the weights matches the ordering of the _points vector.
Definition at line 355 of file quadrature.h.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_weights(), libMesh::QGrundmann_Moller::gm_rule(), libMesh::QBase::init_0D(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), init_1D(), libMesh::QGrundmann_Moller::init_1D(), libMesh::QClough::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QGauss::init_2D(), libMesh::QSimpson::init_2D(), init_2D(), libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), init_3D(), libMesh::QGrundmann_Moller::init_3D(), libMesh::QGauss::keast_rule(), kim_rule(), libMesh::QBase::print_info(), libMesh::QBase::scale(), stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), libMesh::QBase::w(), and wissmann_rule().
|
inherited |
Flag (default true) controlling the use of quadrature rules with negative weights. Set this to false to require rules with all positive weights.
Rules with negative weights can be unsuitable for some problems. For example, it is possible for a rule with negative weights to obtain a negative result when integrating a positive function.
A particular example: if rules with negative weights are not allowed, a request for TET,THIRD (5 points) will return the TET,FIFTH (14 points) rule instead, nearly tripling the computational effort required!
Definition at line 246 of file quadrature.h.
Referenced by libMesh::QGrundmann_Moller::init_2D(), libMesh::QGauss::init_3D(), init_3D(), and libMesh::QGrundmann_Moller::init_3D().