57 {1.0L, 0.0L, 0.0L,
Real(4)/3}
60 const unsigned int rule_id[1] = {
83 const Real sqrt19 =
Real(std::sqrt(19.L));
84 const Real tp =
Real(std::sqrt(71440 + 6802*sqrt19));
89 const Real lambda =
Real(std::sqrt(1919.L/3285.L - 148.L*sqrt19/3285.L + 4.L*tp/3285.L));
92 const Real xi =
Real(-std::sqrt(1121.L/3285.L + 74.L*sqrt19/3285.L - 2.L*tp/3285.L));
95 const Real mu =
Real(std::sqrt(1121.L/3285.L + 74.L*sqrt19/3285.L + 2.L*tp/3285.L));
98 const Real gamma =
Real(std::sqrt(1919.L/3285.L - 148.L*sqrt19/3285.L - 4.L*tp/3285.L));
108 const Real B =
Real(1) / (
Real(260072)/133225 - 1520*sqrt19/133225 + (133 - 37*sqrt19)*tp/133225);
111 const Real C =
Real(1) / (
Real(260072)/133225 - 1520*sqrt19/133225 - (133 - 37*sqrt19)*tp/133225);
191 {
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(-1.27536231884057971014492753623188e+00L)},
192 {
Real(5.85540043769119907612630781744060e-01L),
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(8.71111111111111111111111111111111e-01L)},
193 {
Real(6.94470135991704766602025803883310e-01L),
Real(9.37161638568208038511047377665396e-01L),
Real(4.15659267604065126239606672567031e-01L),
Real(1.68695652173913043478260869565217e-01L)}
196 const unsigned int rule_id[3] = {
223 r =
Real(std::sqrt(6.L/7.L)),
224 s =
Real(std::sqrt((960.L - 3.L*std::sqrt(28798.L)) / 2726.L)),
225 t =
Real(std::sqrt((960.L + 3.L*std::sqrt(28798.L)) / 2726.L)),
226 B1 =
Real(8624)/29160,
227 B2 =
Real(2744)/29160,
228 B3 = 8*(774*t*t - 230)/(9720*(t*t-s*s)),
229 B4 = 8*(230 - 774*s*s)/(9720*(t*t-s*s));
239 const unsigned int rule_id[4] = {
286 {
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(4.51903714875199690490763818699555e-01L)},
287 {
Real(7.82460796435951590652813975429717e-01L),
Real(0.00000000000000000000000000000000e+00L),
Real(0.00000000000000000000000000000000e+00L),
Real(2.99379177352338919703385618576171e-01L)},
288 {
Real(4.88094669706366480526729301468686e-01L),
Real(4.88094669706366480526729301468686e-01L),
Real(4.88094669706366480526729301468686e-01L),
Real(3.00876159371240019939698689791164e-01L)},
289 {
Real(8.62218927661481188856422891110042e-01L),
Real(8.62218927661481188856422891110042e-01L),
Real(8.62218927661481188856422891110042e-01L),
Real(4.94843255877038125738173175714853e-02L)},
290 {
Real(2.81113909408341856058098281846420e-01L),
Real(9.44196578292008195318687494773744e-01L),
Real(6.97574833707236996779391729948984e-01L),
Real(1.22872389222467338799199767122592e-01L)}
293 const unsigned int rule_id[5] = {
320 libmesh_fallthrough();
326 gauss_rule.
init(type_in, p);
virtual void init(const ElemType type=INVALID_ELEM, unsigned int p_level=0)
bool allow_rules_with_negative_weights
const std::vector< Real > & get_weights() const
std::vector< Point > _points
std::vector< Real > _weights
void kim_rule(const Real rule_data[][4], const unsigned int *rule_id, const unsigned int n_pts)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
const std::vector< Point > & get_points() const
static PetscErrorCode Mat * A
Implements 1, 2, and 3D "Gaussian" quadrature rules.
virtual void init_3D(const ElemType _type=INVALID_ELEM, unsigned int p_level=0) override
A geometric point in (x,y,z) space.