Implements the quadrature rules of Grundmann and Moller in 2D and 3D. More...
#include <quadrature_gm.h>
Public Member Functions | |
QGrundmann_Moller (unsigned int dim, Order order=INVALID_ORDER) | |
QGrundmann_Moller (const QGrundmann_Moller &)=default | |
QGrundmann_Moller (QGrundmann_Moller &&)=default | |
QGrundmann_Moller & | operator= (const QGrundmann_Moller &)=default |
QGrundmann_Moller & | operator= (QGrundmann_Moller &&)=default |
virtual | ~QGrundmann_Moller ()=default |
virtual QuadratureType | type () const override |
ElemType | get_elem_type () const |
unsigned int | get_p_level () const |
unsigned int | n_points () const |
unsigned int | get_dim () const |
const std::vector< Point > & | get_points () const |
std::vector< Point > & | get_points () |
const std::vector< Real > & | get_weights () const |
std::vector< Real > & | get_weights () |
Point | qp (const unsigned int i) const |
Real | w (const unsigned int i) const |
virtual void | init (const ElemType type=INVALID_ELEM, unsigned int p_level=0) |
virtual void | init (const Elem &elem, const std::vector< Real > &vertex_distance_func, unsigned int p_level=0) |
Order | get_order () const |
void | print_info (std::ostream &os=libMesh::out) const |
void | scale (std::pair< Real, Real > old_range, std::pair< Real, Real > new_range) |
virtual bool | shapes_need_reinit () |
Static Public Member Functions | |
static std::unique_ptr< QBase > | build (const std::string &name, const unsigned int dim, const Order order=INVALID_ORDER) |
static std::unique_ptr< QBase > | build (const QuadratureType qt, const unsigned int dim, const Order order=INVALID_ORDER) |
static void | print_info (std::ostream &out=libMesh::out) |
static std::string | get_info () |
static unsigned int | n_objects () |
static void | enable_print_counter_info () |
static void | disable_print_counter_info () |
Public Attributes | |
bool | allow_rules_with_negative_weights |
Protected Types | |
typedef std::map< std::string, std::pair< unsigned int, unsigned int > > | Counts |
Protected Member Functions | |
virtual void | init_0D (const ElemType type=INVALID_ELEM, unsigned int p_level=0) |
void | tensor_product_quad (const QBase &q1D) |
void | tensor_product_hex (const QBase &q1D) |
void | tensor_product_prism (const QBase &q1D, const QBase &q2D) |
void | increment_constructor_count (const std::string &name) |
void | increment_destructor_count (const std::string &name) |
Protected Attributes | |
unsigned int | _dim |
Order | _order |
ElemType | _type |
unsigned int | _p_level |
std::vector< Point > | _points |
std::vector< Real > | _weights |
Static Protected Attributes | |
static Counts | _counts |
static Threads::atomic< unsigned int > | _n_objects |
static Threads::spin_mutex | _mutex |
static bool | _enable_print_counter = true |
Private Member Functions | |
virtual void | init_1D (const ElemType, unsigned int=0) override |
virtual void | init_3D (const ElemType _type=INVALID_ELEM, unsigned int p_level=0) override |
virtual void | init_2D (const ElemType _type=INVALID_ELEM, unsigned int p_level=0) override |
void | gm_rule (unsigned int s, unsigned int dim) |
void | compose_all (unsigned int s, unsigned int p, std::vector< std::vector< unsigned int >> &result) |
Implements the quadrature rules of Grundmann and Moller in 2D and 3D.
This class implements the Grundmann-Moller quadrature rules for tetrahedra. The GM rules are well-defined for simplices of arbitrary dimension and to any order, but the rules by Dunavant for two-dimensional simplices are in general superior. This is primarily due to the fact that the GM rules contain a significant proportion of negative weights, making them susceptible to round-off error at high-order.
The GM rules are interesting in 3D because they overlap with the conical product rules at higher order while having significantly fewer evaluation points, making them potentially much more efficient. The table below gives a comparison between the number of points in a conical product (CP) rule and the GM rule of equivalent order. The GM rules are defined to be exact for polynomials of degree d=2*s+1, s=0,1,2,3,... The table also gives the percentage of each GM rule's weights which are negative. The percentage of negative weights appears to approach 50, and the amplification factor (a measure of the effect of round-off) defined as
amp. factor =
where V is the volume of the reference element, grows like exp(C*s). (A rule with all positive weights has an amplification factor of 1.0 by definition.)
* s degree n_pts(conical) n_pts(GM) % neg wts amp. factor * ------------------------------------------------------------------------ * 0 1 1 1 0.00 1.00e+00 * 1 3 8 5 20.00 2.60e+00 * 2 5 27 15 26.67 5.63e+00 * 3 7 64 35 31.43 1.19e+01 * 4 9 125 70 34.29 2.54e+01 * 5 11 216 126 36.51 5.41e+01 * 6 13 343 210 38.10 1.16e+02 * 7 15 512 330 39.39 2.51e+02 * 8 17 729 495 40.40 5.45e+02 * 9 19 1000 715 41.26 1.19e+03 * 10 21 1331 1001 41.96 2.59e+03 * 11 23 1728 1365 42.56 5.68e+03 * 12 25 2197 1820 43.08 1.25e+04 * 13 27 2744 2380 43.53 2.75e+04 * 14 29 3375 3060 43.92 6.07e+04 * 15 31 4096 3876 44.27 1.34e+05 * 16 33 4913 4845 44.58 2.97e+05 * 17 35 5832 5985 44.86 6.59e+05 <= Conical rule has fewer points for degree >= 34 * 18 37 6859 7315 45.11 1.46e+06 * 19 39 8000 8855 45.34 3.25e+06 * 20 41 9261 10626 45.55 7.23e+06 * 21 43 10648 12650 45.74 1.61e+07 *
Reference: Axel Grundmann and Michael M"{o}ller, "Invariant Integration Formulas for the N-Simplex by Combinatorial Methods," SIAM Journal on Numerical Analysis, Volume 15, Number 2, April 1978, pages 282-290.
Reference LGPL Fortran90 code by John Burkardt can be found here: http://people.scs.fsu.edu/~burkardt/f_src/gm_rules/gm_rules.html
Definition at line 96 of file quadrature_gm.h.
|
protectedinherited |
Data structure to log the information. The log is identified by the class name.
Definition at line 117 of file reference_counter.h.
|
inline |
Constructor. Declares the order of the quadrature rule.
Definition at line 103 of file quadrature_gm.h.
|
default |
Copy/move ctor, copy/move assignment operator, and destructor are all explicitly defaulted for this simple class.
|
default |
|
virtualdefault |
|
staticinherited |
Builds a specific quadrature rule based on the name
string. This enables selection of the quadrature rule at run-time. The input parameter name
must be mappable through the Utility::string_to_enum<>()
function.
This function allocates memory, therefore a std::unique_ptr<QBase>
is returned so that the user does not accidentally leak it.
Definition at line 40 of file quadrature_build.C.
References libMesh::QBase::_dim, libMesh::QBase::_order, and libMesh::QBase::type().
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule().
|
staticinherited |
Builds a specific quadrature rule based on the QuadratureType. This enables selection of the quadrature rule at run-time.
This function allocates memory, therefore a std::unique_ptr<QBase>
is returned so that the user does not accidentally leak it.
Definition at line 51 of file quadrature_build.C.
References libMesh::QBase::_dim, libMesh::QBase::_order, libMesh::FIRST, libMesh::FORTYTHIRD, libMesh::out, libMesh::QCLOUGH, libMesh::QCONICAL, libMesh::QGAUSS, libMesh::QGAUSS_LOBATTO, libMesh::QGRID, libMesh::QGRUNDMANN_MOLLER, libMesh::QJACOBI_1_0, libMesh::QJACOBI_2_0, libMesh::QMONOMIAL, libMesh::QSIMPSON, libMesh::QTRAP, libMesh::THIRD, and libMesh::TWENTYTHIRD.
|
private |
Routine which generates p-compositions of a given order, s, as well as permutations thereof. This routine is called internally by the gm_rule() routine, you should not call this yourself!
Definition at line 150 of file quadrature_gm.C.
Referenced by gm_rule().
|
staticinherited |
Definition at line 106 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter.
Referenced by libMesh::LibMeshInit::LibMeshInit().
|
staticinherited |
Methods to enable/disable the reference counter output from print_info()
Definition at line 100 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter.
|
inlineinherited |
Definition at line 136 of file quadrature.h.
References libMesh::QBase::_dim.
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), and libMesh::QConical::conical_product_tri().
|
inlineinherited |
Definition at line 117 of file quadrature.h.
References libMesh::QBase::_type.
|
staticinherited |
Gets a string containing the reference information.
Definition at line 47 of file reference_counter.C.
References libMesh::ReferenceCounter::_counts, and libMesh::Quality::name().
Referenced by libMesh::ReferenceCounter::print_info().
|
inlineinherited |
Definition at line 203 of file quadrature.h.
References libMesh::QBase::_order, and libMesh::QBase::_p_level.
Referenced by libMesh::InfFE< Dim, T_radial, T_map >::attach_quadrature_rule().
|
inlineinherited |
Definition at line 122 of file quadrature.h.
References libMesh::QBase::_p_level.
|
inlineinherited |
std::vector
containing the quadrature point locations in reference element space. Definition at line 142 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::QClough::init_1D(), libMesh::QConical::init_1D(), libMesh::QMonomial::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGauss::init_3D(), and libMesh::QMonomial::init_3D().
|
inlineinherited |
std::vector
containing the quadrature point locations in reference element space as a writable reference. Definition at line 148 of file quadrature.h.
References libMesh::QBase::_points.
|
inlineinherited |
std::vector
containing the quadrature weights. Definition at line 154 of file quadrature.h.
References libMesh::QBase::_weights.
Referenced by libMesh::QClough::init_1D(), libMesh::QConical::init_1D(), libMesh::QMonomial::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGauss::init_3D(), and libMesh::QMonomial::init_3D().
|
inlineinherited |
std::vector
containing the quadrature weights. Definition at line 160 of file quadrature.h.
References libMesh::QBase::_weights.
|
private |
This routine is called from init_2D() and init_3D(). It actually fills the _points and _weights vectors for a given rule index, s and dimension, dim.
Definition at line 52 of file quadrature_gm.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, compose_all(), std::max(), libMesh::Real, and libMesh::MeshTools::weight().
Referenced by init_2D(), and init_3D().
|
inlineprotectedinherited |
Increments the construction counter. Should be called in the constructor of any derived class that will be reference counted.
Definition at line 181 of file reference_counter.h.
References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.
Referenced by libMesh::ReferenceCountedObject< RBParametrized >::ReferenceCountedObject().
|
inlineprotectedinherited |
Increments the destruction counter. Should be called in the destructor of any derived class that will be reference counted.
Definition at line 194 of file reference_counter.h.
References libMesh::ReferenceCounter::_counts, libMesh::Quality::name(), and libMesh::Threads::spin_mtx.
Referenced by libMesh::ReferenceCountedObject< RBParametrized >::~ReferenceCountedObject().
|
virtualinherited |
Initializes the data structures for a quadrature rule for an element of type type
.
Definition at line 28 of file quadrature.C.
References libMesh::QBase::_dim, libMesh::QBase::_p_level, libMesh::QBase::_type, libMesh::QBase::init_0D(), libMesh::QBase::init_1D(), libMesh::QBase::init_2D(), and libMesh::QBase::init_3D().
Referenced by libMesh::QBase::init(), libMesh::QClough::init_1D(), libMesh::QMonomial::init_1D(), libMesh::QClough::init_2D(), libMesh::QGaussLobatto::init_2D(), libMesh::QGrid::init_2D(), libMesh::QTrap::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), libMesh::QGauss::QGauss(), libMesh::QGaussLobatto::QGaussLobatto(), libMesh::QJacobi::QJacobi(), libMesh::QSimpson::QSimpson(), and libMesh::QTrap::QTrap().
|
virtualinherited |
Initializes the data structures for an element potentially "cut" by a signed distance function. The array vertex_distance_func
contains vertex values of the signed distance function. If the signed distance function changes sign on the vertices, then the element is considered to be cut.) This interface can be extended by derived classes in order to subdivide the element and construct a composite quadrature rule.
Definition at line 72 of file quadrature.C.
References libMesh::QBase::init(), and libMesh::Elem::type().
|
protectedvirtualinherited |
Initializes the 0D quadrature rule by filling the points and weights vectors with the appropriate values. Generally this is just one point with weight 1.
Definition at line 82 of file quadrature.C.
References libMesh::QBase::_points, and libMesh::QBase::_weights.
Referenced by libMesh::QBase::init().
|
overrideprivatevirtual |
In 1D, simply use a Gauss rule.
Implements libMesh::QBase.
Definition at line 38 of file quadrature_gm.C.
References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::get_points(), and libMesh::QBase::get_weights().
|
overrideprivatevirtual |
Initialize a 2D GM rule. Only makes sense for Tris.
Reimplemented from libMesh::QBase.
Definition at line 28 of file quadrature_gm_2D.C.
References libMesh::QBase::_order, libMesh::QBase::allow_rules_with_negative_weights, gm_rule(), libMesh::TRI3, and libMesh::TRI6.
|
overrideprivatevirtual |
Initialize a 3D GM rule. Only makes sense for Tets.
Reimplemented from libMesh::QBase.
Definition at line 28 of file quadrature_gm_3D.C.
References libMesh::QBase::_order, libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::allow_rules_with_negative_weights, libMesh::CONSTANT, libMesh::FIFTH, libMesh::FIRST, libMesh::FOURTH, gm_rule(), libMesh::Real, libMesh::SECOND, libMesh::SEVENTH, libMesh::SIXTH, libMesh::TET10, libMesh::TET4, and libMesh::THIRD.
|
inlinestaticinherited |
Prints the number of outstanding (created, but not yet destroyed) objects.
Definition at line 83 of file reference_counter.h.
References libMesh::ReferenceCounter::_n_objects.
|
inlineinherited |
Definition at line 127 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::ExactSolution::_compute_error(), libMesh::System::calculate_norm(), libMesh::FirstOrderUnsteadySolver::compute_second_order_eqns(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::print_info(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
default |
|
default |
|
staticinherited |
Prints the reference information, by default to libMesh::out
.
Definition at line 87 of file reference_counter.C.
References libMesh::ReferenceCounter::_enable_print_counter, and libMesh::ReferenceCounter::get_info().
|
inlineinherited |
Prints information relevant to the quadrature rule, by default to libMesh::out.
Definition at line 378 of file quadrature.h.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), and libMesh::Real.
Referenced by libMesh::operator<<().
|
inlineinherited |
Definition at line 165 of file quadrature.h.
References libMesh::QBase::_points.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
inherited |
Maps the points of a 1D quadrature rule defined by "old_range" to another 1D interval defined by "new_range" and scales the weights accordingly.
Definition at line 93 of file quadrature.C.
References libMesh::QBase::_dim, libMesh::QBase::_points, libMesh::QBase::_weights, and libMesh::Real.
Referenced by libMesh::QConical::conical_product_tet(), and libMesh::QConical::conical_product_tri().
|
inlinevirtualinherited |
true
if the shape functions need to be recalculated, false
otherwise.This may be required if the number of quadrature points or their position changes.
Definition at line 231 of file quadrature.h.
|
protectedinherited |
Computes the tensor product quadrature rule [q1D x q1D x q1D] from the 1D rule q1D. Used in the init_3D routines for hexahedral element types.
Definition at line 154 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGaussLobatto::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGrid::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGauss::init_3D().
|
protectedinherited |
Computes the tensor product of a 1D quadrature rule and a 2D quadrature rule. Used in the init_3D routines for prismatic element types.
Definition at line 181 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QSimpson::init_3D(), and libMesh::QGauss::init_3D().
|
protectedinherited |
Constructs a 2D rule from the tensor product of q1D
with itself. Used in the init_2D()
routines for quadrilateral element types.
Definition at line 127 of file quadrature.C.
References libMesh::QBase::_points, libMesh::QBase::_weights, libMesh::QBase::n_points(), libMesh::QBase::qp(), and libMesh::QBase::w().
Referenced by libMesh::QGaussLobatto::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QSimpson::init_2D(), and libMesh::QGauss::init_2D().
|
overridevirtual |
QGRUNDMANN_MOLLER
. Implements libMesh::QBase.
Definition at line 31 of file quadrature_gm.C.
References libMesh::QGRUNDMANN_MOLLER.
|
inlineinherited |
Definition at line 174 of file quadrature.h.
References libMesh::QBase::_weights.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), and libMesh::QBase::tensor_product_quad().
|
staticprotectedinherited |
Actually holds the data.
Definition at line 122 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::get_info(), libMesh::ReferenceCounter::increment_constructor_count(), and libMesh::ReferenceCounter::increment_destructor_count().
|
protectedinherited |
The spatial dimension of the quadrature rule.
Definition at line 325 of file quadrature.h.
Referenced by libMesh::QBase::build(), libMesh::QBase::get_dim(), libMesh::QBase::init(), libMesh::QGaussLobatto::QGaussLobatto(), libMesh::QJacobi::QJacobi(), libMesh::QSimpson::QSimpson(), libMesh::QTrap::QTrap(), and libMesh::QBase::scale().
|
staticprotectedinherited |
Flag to control whether reference count information is printed when print_info is called.
Definition at line 141 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::disable_print_counter_info(), libMesh::ReferenceCounter::enable_print_counter_info(), and libMesh::ReferenceCounter::print_info().
|
staticprotectedinherited |
Mutual exclusion object to enable thread-safe reference counting.
Definition at line 135 of file reference_counter.h.
|
staticprotectedinherited |
The number of objects. Print the reference count information when the number returns to 0.
Definition at line 130 of file reference_counter.h.
Referenced by libMesh::ReferenceCounter::n_objects(), libMesh::ReferenceCounter::ReferenceCounter(), and libMesh::ReferenceCounter::~ReferenceCounter().
|
protectedinherited |
The polynomial order which the quadrature rule is capable of integrating exactly.
Definition at line 331 of file quadrature.h.
Referenced by libMesh::QBase::build(), libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QBase::get_order(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QGrid::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), libMesh::QMonomial::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QGaussLobatto::init_2D(), libMesh::QGrid::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), init_2D(), libMesh::QGaussLobatto::init_3D(), libMesh::QGrid::init_3D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), and init_3D().
|
protectedinherited |
The p-level of the element for which the current values have been computed.
Definition at line 343 of file quadrature.h.
Referenced by libMesh::QBase::get_order(), libMesh::QBase::get_p_level(), and libMesh::QBase::init().
|
protectedinherited |
The locations of the quadrature points in reference element space.
Definition at line 349 of file quadrature.h.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_points(), gm_rule(), libMesh::QBase::init_0D(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), libMesh::QMonomial::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QGauss::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QGauss::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QMonomial::init_3D(), init_3D(), libMesh::QGauss::keast_rule(), libMesh::QMonomial::kim_rule(), libMesh::QBase::n_points(), libMesh::QBase::print_info(), libMesh::QBase::qp(), libMesh::QBase::scale(), libMesh::QMonomial::stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), and libMesh::QMonomial::wissmann_rule().
|
protectedinherited |
The type of element for which the current values have been computed.
Definition at line 337 of file quadrature.h.
Referenced by libMesh::QBase::get_elem_type(), and libMesh::QBase::init().
|
protectedinherited |
The quadrature weights. The order of the weights matches the ordering of the _points vector.
Definition at line 355 of file quadrature.h.
Referenced by libMesh::QConical::conical_product_pyramid(), libMesh::QConical::conical_product_tet(), libMesh::QConical::conical_product_tri(), libMesh::QGauss::dunavant_rule(), libMesh::QGauss::dunavant_rule2(), libMesh::QBase::get_weights(), gm_rule(), libMesh::QBase::init_0D(), libMesh::QClough::init_1D(), libMesh::QGaussLobatto::init_1D(), libMesh::QConical::init_1D(), libMesh::QTrap::init_1D(), libMesh::QGrid::init_1D(), libMesh::QSimpson::init_1D(), libMesh::QGauss::init_1D(), libMesh::QJacobi::init_1D(), libMesh::QMonomial::init_1D(), init_1D(), libMesh::QClough::init_2D(), libMesh::QTrap::init_2D(), libMesh::QGrid::init_2D(), libMesh::QGauss::init_2D(), libMesh::QSimpson::init_2D(), libMesh::QMonomial::init_2D(), libMesh::QGrid::init_3D(), libMesh::QTrap::init_3D(), libMesh::QSimpson::init_3D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), init_3D(), libMesh::QGauss::keast_rule(), libMesh::QMonomial::kim_rule(), libMesh::QBase::print_info(), libMesh::QBase::scale(), libMesh::QMonomial::stroud_rule(), libMesh::QBase::tensor_product_hex(), libMesh::QBase::tensor_product_prism(), libMesh::QBase::tensor_product_quad(), libMesh::QBase::w(), and libMesh::QMonomial::wissmann_rule().
|
inherited |
Flag (default true) controlling the use of quadrature rules with negative weights. Set this to false to require rules with all positive weights.
Rules with negative weights can be unsuitable for some problems. For example, it is possible for a rule with negative weights to obtain a negative result when integrating a positive function.
A particular example: if rules with negative weights are not allowed, a request for TET,THIRD (5 points) will return the TET,FIFTH (14 points) rule instead, nearly tripling the computational effort required!
Definition at line 246 of file quadrature.h.
Referenced by init_2D(), libMesh::QGauss::init_3D(), libMesh::QMonomial::init_3D(), and init_3D().