libMesh::DistributedMesh Class Reference

Mesh data structure which is distributed across all processors. More...

#include <distributed_mesh.h>

Inheritance diagram for libMesh::DistributedMesh:

Public Types

typedef Predicates::multi_predicate Predicate
 

Public Member Functions

 DistributedMesh (const Parallel::Communicator &comm_in, unsigned char dim=1)
 
 DistributedMesh (unsigned char dim=1)
 
 DistributedMesh (const UnstructuredMesh &other_mesh)
 
 DistributedMesh (const DistributedMesh &other_mesh)
 
virtual UniquePtr< MeshBaseclone () const libmesh_override
 
virtual ~DistributedMesh ()
 
virtual void clear () libmesh_override
 
virtual void redistribute () libmesh_override
 
virtual void update_post_partitioning () libmesh_override
 
virtual bool is_serial () const libmesh_override
 
virtual bool is_replicated () const libmesh_override
 
template<typename T >
void libmesh_assert_valid_parallel_object_ids (const mapvector< T *, dof_id_type > &) const
 
virtual void libmesh_assert_valid_parallel_ids () const libmesh_override
 
void libmesh_assert_valid_parallel_p_levels () const
 
void libmesh_assert_valid_parallel_flags () const
 
template<typename T >
dof_id_type renumber_dof_objects (mapvector< T *, dof_id_type > &)
 
virtual void renumber_nodes_and_elements () libmesh_override
 
virtual void allgather () libmesh_override
 
virtual void gather_to_zero () libmesh_override
 
virtual void delete_remote_elements () libmesh_override
 
virtual void add_extra_ghost_elem (Elem *e)
 
virtual void clear_extra_ghost_elems ()
 
virtual dof_id_type n_nodes () const libmesh_override
 
virtual dof_id_type max_node_id () const libmesh_override
 
virtual void reserve_nodes (const dof_id_type) libmesh_override
 
virtual dof_id_type n_elem () const libmesh_override
 
virtual dof_id_type n_active_elem () const libmesh_override
 
virtual dof_id_type max_elem_id () const libmesh_override
 
virtual void reserve_elem (const dof_id_type) libmesh_override
 
virtual void update_parallel_id_counts () libmesh_override
 
virtual dof_id_type parallel_n_nodes () const libmesh_override
 
dof_id_type parallel_max_node_id () const
 
virtual dof_id_type parallel_n_elem () const libmesh_override
 
dof_id_type parallel_max_elem_id () const
 
virtual unique_id_type parallel_max_unique_id () const libmesh_override
 
virtual const Pointpoint (const dof_id_type i) const libmesh_override
 
virtual const Nodenode_ptr (const dof_id_type i) const libmesh_override
 
virtual Nodenode_ptr (const dof_id_type i) libmesh_override
 
virtual const Nodequery_node_ptr (const dof_id_type i) const libmesh_override
 
virtual Nodequery_node_ptr (const dof_id_type i) libmesh_override
 
virtual const Elemelem_ptr (const dof_id_type i) const libmesh_override
 
virtual Elemelem_ptr (const dof_id_type i) libmesh_override
 
virtual const Elemquery_elem_ptr (const dof_id_type i) const libmesh_override
 
virtual Elemquery_elem_ptr (const dof_id_type i) libmesh_override
 
virtual Nodeadd_point (const Point &p, const dof_id_type id=DofObject::invalid_id, const processor_id_type proc_id=DofObject::invalid_processor_id) libmesh_override
 
virtual Nodeadd_node (Node *n) libmesh_override
 
virtual Nodeinsert_node (Node *n) libmesh_override
 
virtual void delete_node (Node *n) libmesh_override
 
virtual void renumber_node (dof_id_type old_id, dof_id_type new_id) libmesh_override
 
virtual Elemadd_elem (Elem *e) libmesh_override
 
virtual Eleminsert_elem (Elem *e) libmesh_override
 
virtual void delete_elem (Elem *e) libmesh_override
 
virtual void renumber_elem (dof_id_type old_id, dof_id_type new_id) libmesh_override
 
virtual void fix_broken_node_and_element_numbering () libmesh_override
 
virtual element_iterator elements_begin () libmesh_override
 
virtual element_iterator elements_end () libmesh_override
 
virtual const_element_iterator elements_begin () const libmesh_override
 
virtual const_element_iterator elements_end () const libmesh_override
 
virtual element_iterator active_elements_begin () libmesh_override
 
virtual element_iterator active_elements_end () libmesh_override
 
virtual const_element_iterator active_elements_begin () const libmesh_override
 
virtual const_element_iterator active_elements_end () const libmesh_override
 
virtual element_iterator ancestor_elements_begin () libmesh_override
 
virtual element_iterator ancestor_elements_end () libmesh_override
 
virtual const_element_iterator ancestor_elements_begin () const libmesh_override
 
virtual const_element_iterator ancestor_elements_end () const libmesh_override
 
virtual element_iterator subactive_elements_begin () libmesh_override
 
virtual element_iterator subactive_elements_end () libmesh_override
 
virtual const_element_iterator subactive_elements_begin () const libmesh_override
 
virtual const_element_iterator subactive_elements_end () const libmesh_override
 
virtual element_iterator not_active_elements_begin () libmesh_override
 
virtual element_iterator not_active_elements_end () libmesh_override
 
virtual const_element_iterator not_active_elements_begin () const libmesh_override
 
virtual const_element_iterator not_active_elements_end () const libmesh_override
 
virtual element_iterator not_ancestor_elements_begin () libmesh_override
 
virtual element_iterator not_ancestor_elements_end () libmesh_override
 
virtual const_element_iterator not_ancestor_elements_begin () const libmesh_override
 
virtual const_element_iterator not_ancestor_elements_end () const libmesh_override
 
virtual element_iterator not_subactive_elements_begin () libmesh_override
 
virtual element_iterator not_subactive_elements_end () libmesh_override
 
virtual const_element_iterator not_subactive_elements_begin () const libmesh_override
 
virtual const_element_iterator not_subactive_elements_end () const libmesh_override
 
virtual element_iterator local_elements_begin () libmesh_override
 
virtual element_iterator local_elements_end () libmesh_override
 
virtual const_element_iterator local_elements_begin () const libmesh_override
 
virtual const_element_iterator local_elements_end () const libmesh_override
 
virtual element_iterator semilocal_elements_begin () libmesh_override
 
virtual element_iterator semilocal_elements_end () libmesh_override
 
virtual const_element_iterator semilocal_elements_begin () const libmesh_override
 
virtual const_element_iterator semilocal_elements_end () const libmesh_override
 
virtual element_iterator active_semilocal_elements_begin () libmesh_override
 
virtual element_iterator active_semilocal_elements_end () libmesh_override
 
virtual const_element_iterator active_semilocal_elements_begin () const libmesh_override
 
virtual const_element_iterator active_semilocal_elements_end () const libmesh_override
 
virtual element_iterator facelocal_elements_begin () libmesh_override
 
virtual element_iterator facelocal_elements_end () libmesh_override
 
virtual const_element_iterator facelocal_elements_begin () const libmesh_override
 
virtual const_element_iterator facelocal_elements_end () const libmesh_override
 
virtual element_iterator not_local_elements_begin () libmesh_override
 
virtual element_iterator not_local_elements_end () libmesh_override
 
virtual const_element_iterator not_local_elements_begin () const libmesh_override
 
virtual const_element_iterator not_local_elements_end () const libmesh_override
 
virtual element_iterator active_local_elements_begin () libmesh_override
 
virtual element_iterator active_local_elements_end () libmesh_override
 
virtual const_element_iterator active_local_elements_begin () const libmesh_override
 
virtual const_element_iterator active_local_elements_end () const libmesh_override
 
virtual element_iterator active_not_local_elements_begin () libmesh_override
 
virtual element_iterator active_not_local_elements_end () libmesh_override
 
virtual const_element_iterator active_not_local_elements_begin () const libmesh_override
 
virtual const_element_iterator active_not_local_elements_end () const libmesh_override
 
virtual element_iterator level_elements_begin (unsigned int level) libmesh_override
 
virtual element_iterator level_elements_end (unsigned int level) libmesh_override
 
virtual const_element_iterator level_elements_begin (unsigned int level) const libmesh_override
 
virtual const_element_iterator level_elements_end (unsigned int level) const libmesh_override
 
virtual element_iterator not_level_elements_begin (unsigned int level) libmesh_override
 
virtual element_iterator not_level_elements_end (unsigned int level) libmesh_override
 
virtual const_element_iterator not_level_elements_begin (unsigned int level) const libmesh_override
 
virtual const_element_iterator not_level_elements_end (unsigned int level) const libmesh_override
 
virtual element_iterator local_level_elements_begin (unsigned int level) libmesh_override
 
virtual element_iterator local_level_elements_end (unsigned int level) libmesh_override
 
virtual const_element_iterator local_level_elements_begin (unsigned int level) const libmesh_override
 
virtual const_element_iterator local_level_elements_end (unsigned int level) const libmesh_override
 
virtual element_iterator local_not_level_elements_begin (unsigned int level) libmesh_override
 
virtual element_iterator local_not_level_elements_end (unsigned int level) libmesh_override
 
virtual const_element_iterator local_not_level_elements_begin (unsigned int level) const libmesh_override
 
virtual const_element_iterator local_not_level_elements_end (unsigned int level) const libmesh_override
 
virtual element_iterator pid_elements_begin (processor_id_type proc_id) libmesh_override
 
virtual element_iterator pid_elements_end (processor_id_type proc_id) libmesh_override
 
virtual const_element_iterator pid_elements_begin (processor_id_type proc_id) const libmesh_override
 
virtual const_element_iterator pid_elements_end (processor_id_type proc_id) const libmesh_override
 
virtual element_iterator type_elements_begin (ElemType type) libmesh_override
 
virtual element_iterator type_elements_end (ElemType type) libmesh_override
 
virtual const_element_iterator type_elements_begin (ElemType type) const libmesh_override
 
virtual const_element_iterator type_elements_end (ElemType type) const libmesh_override
 
virtual element_iterator active_type_elements_begin (ElemType type) libmesh_override
 
virtual element_iterator active_type_elements_end (ElemType type) libmesh_override
 
virtual const_element_iterator active_type_elements_begin (ElemType type) const libmesh_override
 
virtual const_element_iterator active_type_elements_end (ElemType type) const libmesh_override
 
virtual element_iterator active_pid_elements_begin (processor_id_type proc_id) libmesh_override
 
virtual element_iterator active_pid_elements_end (processor_id_type proc_id) libmesh_override
 
virtual const_element_iterator active_pid_elements_begin (processor_id_type proc_id) const libmesh_override
 
virtual const_element_iterator active_pid_elements_end (processor_id_type proc_id) const libmesh_override
 
virtual element_iterator unpartitioned_elements_begin () libmesh_override
 
virtual element_iterator unpartitioned_elements_end () libmesh_override
 
virtual const_element_iterator unpartitioned_elements_begin () const libmesh_override
 
virtual const_element_iterator unpartitioned_elements_end () const libmesh_override
 
virtual element_iterator active_unpartitioned_elements_begin () libmesh_override
 
virtual element_iterator active_unpartitioned_elements_end () libmesh_override
 
virtual const_element_iterator active_unpartitioned_elements_begin () const libmesh_override
 
virtual const_element_iterator active_unpartitioned_elements_end () const libmesh_override
 
virtual element_iterator active_local_subdomain_elements_begin (subdomain_id_type subdomain_id) libmesh_override
 
virtual element_iterator active_local_subdomain_elements_end (subdomain_id_type subdomain_id) libmesh_override
 
virtual const_element_iterator active_local_subdomain_elements_begin (subdomain_id_type subdomain_id) const libmesh_override
 
virtual const_element_iterator active_local_subdomain_elements_end (subdomain_id_type subdomain_id) const libmesh_override
 
virtual element_iterator active_subdomain_elements_begin (subdomain_id_type subdomain_id) libmesh_override
 
virtual element_iterator active_subdomain_elements_end (subdomain_id_type subdomain_id) libmesh_override
 
virtual const_element_iterator active_subdomain_elements_begin (subdomain_id_type subdomain_id) const libmesh_override
 
virtual const_element_iterator active_subdomain_elements_end (subdomain_id_type subdomain_id) const libmesh_override
 
virtual element_iterator active_subdomain_set_elements_begin (std::set< subdomain_id_type > ss) libmesh_override
 
virtual element_iterator active_subdomain_set_elements_end (std::set< subdomain_id_type > ss) libmesh_override
 
virtual const_element_iterator active_subdomain_set_elements_begin (std::set< subdomain_id_type > ss) const libmesh_override
 
virtual const_element_iterator active_subdomain_set_elements_end (std::set< subdomain_id_type > ss) const libmesh_override
 
virtual element_iterator ghost_elements_begin () libmesh_override
 
virtual element_iterator ghost_elements_end () libmesh_override
 
virtual const_element_iterator ghost_elements_begin () const libmesh_override
 
virtual const_element_iterator ghost_elements_end () const libmesh_override
 
virtual element_iterator evaluable_elements_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) libmesh_override
 
virtual element_iterator evaluable_elements_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) libmesh_override
 
virtual const_element_iterator evaluable_elements_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const libmesh_override
 
virtual const_element_iterator evaluable_elements_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const libmesh_override
 
virtual element_iterator flagged_elements_begin (unsigned char rflag) libmesh_override
 
virtual element_iterator flagged_elements_end (unsigned char rflag) libmesh_override
 
virtual const_element_iterator flagged_elements_begin (unsigned char rflag) const libmesh_override
 
virtual const_element_iterator flagged_elements_end (unsigned char rflag) const libmesh_override
 
virtual element_iterator flagged_pid_elements_begin (unsigned char rflag, processor_id_type pid) libmesh_override
 
virtual element_iterator flagged_pid_elements_end (unsigned char rflag, processor_id_type pid) libmesh_override
 
virtual const_element_iterator flagged_pid_elements_begin (unsigned char rflag, processor_id_type pid) const libmesh_override
 
virtual const_element_iterator flagged_pid_elements_end (unsigned char rflag, processor_id_type pid) const libmesh_override
 
virtual node_iterator nodes_begin () libmesh_override
 
virtual node_iterator nodes_end () libmesh_override
 
virtual const_node_iterator nodes_begin () const libmesh_override
 
virtual const_node_iterator nodes_end () const libmesh_override
 
virtual node_iterator active_nodes_begin () libmesh_override
 
virtual node_iterator active_nodes_end () libmesh_override
 
virtual const_node_iterator active_nodes_begin () const libmesh_override
 
virtual const_node_iterator active_nodes_end () const libmesh_override
 
virtual node_iterator local_nodes_begin () libmesh_override
 
virtual node_iterator local_nodes_end () libmesh_override
 
virtual const_node_iterator local_nodes_begin () const libmesh_override
 
virtual const_node_iterator local_nodes_end () const libmesh_override
 
virtual node_iterator pid_nodes_begin (processor_id_type proc_id) libmesh_override
 
virtual node_iterator pid_nodes_end (processor_id_type proc_id) libmesh_override
 
virtual const_node_iterator pid_nodes_begin (processor_id_type proc_id) const libmesh_override
 
virtual const_node_iterator pid_nodes_end (processor_id_type proc_id) const libmesh_override
 
virtual node_iterator bid_nodes_begin (boundary_id_type bndry_id) libmesh_override
 
virtual node_iterator bid_nodes_end (boundary_id_type bndry_id) libmesh_override
 
virtual const_node_iterator bid_nodes_begin (boundary_id_type bndry_id) const libmesh_override
 
virtual const_node_iterator bid_nodes_end (boundary_id_type bndry_id) const libmesh_override
 
virtual node_iterator bnd_nodes_begin () libmesh_override
 
virtual node_iterator bnd_nodes_end () libmesh_override
 
virtual const_node_iterator bnd_nodes_begin () const libmesh_override
 
virtual const_node_iterator bnd_nodes_end () const libmesh_override
 
virtual node_iterator evaluable_nodes_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) libmesh_override
 
virtual node_iterator evaluable_nodes_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) libmesh_override
 
virtual const_node_iterator evaluable_nodes_begin (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const libmesh_override
 
virtual const_node_iterator evaluable_nodes_end (const DofMap &dof_map, unsigned int var_num=libMesh::invalid_uint) const libmesh_override
 
virtual void read (const std::string &name, void *mesh_data=libmesh_nullptr, bool skip_renumber_nodes_and_elements=false, bool skip_find_neighbors=false) libmesh_override
 
virtual void write (const std::string &name) libmesh_override
 
void write (const std::string &name, const std::vector< Number > &values, const std::vector< std::string > &variable_names)
 
virtual void all_first_order () libmesh_override
 
virtual void all_second_order (const bool full_ordered=true) libmesh_override
 
void create_pid_mesh (UnstructuredMesh &pid_mesh, const processor_id_type pid) const
 
void create_submesh (UnstructuredMesh &new_mesh, const_element_iterator &it, const const_element_iterator &it_end) const
 
virtual void copy_nodes_and_elements (const UnstructuredMesh &other_mesh, const bool skip_find_neighbors=false)
 
virtual void find_neighbors (const bool reset_remote_elements=false, const bool reset_current_list=true) libmesh_override
 
virtual bool contract () libmesh_override
 
virtual UniquePtr< Partitioner > & partitioner ()
 
const BoundaryInfoget_boundary_info () const
 
BoundaryInfoget_boundary_info ()
 
bool is_prepared () const
 
unsigned int mesh_dimension () const
 
void set_mesh_dimension (unsigned char d)
 
const std::set< unsigned char > & elem_dimensions () const
 
unsigned int spatial_dimension () const
 
void set_spatial_dimension (unsigned char d)
 
dof_id_type n_nodes_on_proc (const processor_id_type proc) const
 
dof_id_type n_local_nodes () const
 
dof_id_type n_unpartitioned_nodes () const
 
unique_id_type next_unique_id ()
 
void set_next_unique_id (unique_id_type id)
 
dof_id_type n_elem_on_proc (const processor_id_type proc) const
 
dof_id_type n_local_elem () const
 
dof_id_type n_unpartitioned_elem () const
 
dof_id_type n_active_elem_on_proc (const processor_id_type proc) const
 
dof_id_type n_active_local_elem () const
 
dof_id_type n_sub_elem () const
 
dof_id_type n_active_sub_elem () const
 
virtual const Nodenode_ref (const dof_id_type i) const
 
virtual Nodenode_ref (const dof_id_type i)
 
virtual const Nodenode (const dof_id_type i) const
 
virtual Nodenode (const dof_id_type i)
 
virtual const Elemelem_ref (const dof_id_type i) const
 
virtual Elemelem_ref (const dof_id_type i)
 
virtual const Elemelem (const dof_id_type i) const
 
virtual Elemelem (const dof_id_type i)
 
virtual const Elemquery_elem (const dof_id_type i) const
 
virtual Elemquery_elem (const dof_id_type i)
 
void prepare_for_use (const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
 
virtual void partition (const unsigned int n_parts)
 
void partition ()
 
void allow_renumbering (bool allow)
 
bool allow_renumbering () const
 
void allow_remote_element_removal (bool allow)
 
bool allow_remote_element_removal () const
 
void skip_partitioning (bool skip)
 
bool skip_partitioning () const
 
void add_ghosting_functor (GhostingFunctor &ghosting_functor)
 
void remove_ghosting_functor (GhostingFunctor &ghosting_functor)
 
std::set< GhostingFunctor * >::const_iterator ghosting_functors_begin () const
 
std::set< GhostingFunctor * >::const_iterator ghosting_functors_end () const
 
void subdomain_ids (std::set< subdomain_id_type > &ids) const
 
subdomain_id_type n_subdomains () const
 
unsigned int n_partitions () const
 
std::string get_info () const
 
void print_info (std::ostream &os=libMesh::out) const
 
unsigned int recalculate_n_partitions ()
 
const PointLocatorBasepoint_locator () const
 
UniquePtr< PointLocatorBasesub_point_locator () const
 
void clear_point_locator ()
 
void set_count_lower_dim_elems_in_point_locator (bool count_lower_dim_elems)
 
bool get_count_lower_dim_elems_in_point_locator () const
 
std::string & subdomain_name (subdomain_id_type id)
 
const std::string & subdomain_name (subdomain_id_type id) const
 
subdomain_id_type get_id_by_name (const std::string &name) const
 
std::map< subdomain_id_type, std::string > & set_subdomain_name_map ()
 
const std::map< subdomain_id_type, std::string > & get_subdomain_name_map () const
 
void cache_elem_dims ()
 
void detect_interior_parents ()
 
const Parallel::Communicatorcomm () const
 
processor_id_type n_processors () const
 
processor_id_type processor_id () const
 

Public Attributes

UniquePtr< BoundaryInfoboundary_info
 

Protected Member Functions

unsigned int & set_n_partitions ()
 

Protected Attributes

mapvector< Node *, dof_id_type_nodes
 
mapvector< Elem *, dof_id_type_elements
 
bool _is_serial
 
bool _is_serial_on_proc_0
 
dof_id_type _n_nodes
 
dof_id_type _n_elem
 
dof_id_type _max_node_id
 
dof_id_type _max_elem_id
 
dof_id_type _next_free_local_node_id
 
dof_id_type _next_free_local_elem_id
 
dof_id_type _next_free_unpartitioned_node_id
 
dof_id_type _next_free_unpartitioned_elem_id
 
unique_id_type _next_unpartitioned_unique_id
 
std::set< Elem * > _extra_ghost_elems
 
unsigned int _n_parts
 
bool _is_prepared
 
UniquePtr< PointLocatorBase_point_locator
 
bool _count_lower_dim_elems_in_point_locator
 
UniquePtr< Partitioner_partitioner
 
unique_id_type _next_unique_id
 
bool _skip_partitioning
 
bool _skip_renumber_nodes_and_elements
 
bool _allow_remote_element_removal
 
std::map< subdomain_id_type, std::string > _block_id_to_name
 
std::set< unsigned char > _elem_dims
 
unsigned char _spatial_dimension
 
UniquePtr< GhostingFunctor_default_ghosting
 
std::set< GhostingFunctor * > _ghosting_functors
 
const Parallel::Communicator_communicator
 

Private Types

typedef mapvector< Elem *, dof_id_type >::veclike_iterator elem_iterator_imp
 
typedef mapvector< Elem *, dof_id_type >::const_veclike_iterator const_elem_iterator_imp
 
typedef mapvector< Node *, dof_id_type >::veclike_iterator node_iterator_imp
 
typedef mapvector< Node *, dof_id_type >::const_veclike_iterator const_node_iterator_imp
 

Detailed Description

Mesh data structure which is distributed across all processors.

The DistributedMesh class is derived from the MeshBase class, and is intended to provide identical functionality to the user but be distributed rather than replicated across distributed-memory systems.

Author
Roy Stogner
Date
2007

Definition at line 49 of file distributed_mesh.h.

Member Typedef Documentation

typedef mapvector<Elem *, dof_id_type>::const_veclike_iterator libMesh::DistributedMesh::const_elem_iterator_imp
private

Definition at line 542 of file distributed_mesh.h.

typedef mapvector<Node *, dof_id_type>::const_veclike_iterator libMesh::DistributedMesh::const_node_iterator_imp
private

Definition at line 549 of file distributed_mesh.h.

Typedefs for the container implementation. In this case, it's just a std::vector<Elem *>.

Definition at line 541 of file distributed_mesh.h.

Typedefs for the container implementation. In this case, it's just a std::vector<Node *>.

Definition at line 548 of file distributed_mesh.h.

We need an empty, generic class to act as a predicate for this and derived mesh classes.

Definition at line 844 of file mesh_base.h.

Constructor & Destructor Documentation

libMesh::DistributedMesh::DistributedMesh ( const Parallel::Communicator comm_in,
unsigned char  dim = 1 
)
explicit

Constructor. Takes dim, the dimension of the mesh. The mesh dimension can be changed (and may automatically be changed by mesh generation/loading) later.

Definition at line 34 of file distributed_mesh.C.

References _is_serial, _max_elem_id, _max_node_id, _n_elem, _n_nodes, _next_free_local_elem_id, _next_free_local_node_id, _next_free_unpartitioned_elem_id, _next_free_unpartitioned_node_id, libMesh::MeshBase::_next_unique_id, _next_unpartitioned_unique_id, libMesh::MeshBase::_partitioner, clear(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::UnstructuredMesh::UnstructuredMesh(), and ~DistributedMesh().

Referenced by clone().

35  :
36  UnstructuredMesh (comm_in,d), _is_serial(true),
42 #ifdef LIBMESH_ENABLE_UNIQUE_ID
44 #endif
45 {
46 #ifdef LIBMESH_ENABLE_UNIQUE_ID
47  _next_unique_id = this->processor_id();
48 #endif
49 
50  // FIXME: give parmetis the communicator!
51  _partitioner = UniquePtr<Partitioner>(new ParmetisPartitioner());
52 }
53 
54 
55 #ifndef LIBMESH_DISABLE_COMMWORLD
56 // ------------------------------------------------------------
57 // DistributedMesh class member functions
58 DistributedMesh::DistributedMesh (unsigned char d) :
59  UnstructuredMesh (d), _is_serial(true),
65 #ifdef LIBMESH_ENABLE_UNIQUE_ID
67 #endif
68 {
69  libmesh_deprecated();
70 
71 #ifdef LIBMESH_ENABLE_UNIQUE_ID
72  _next_unique_id = this->processor_id();
73 #endif
74 
75  // FIXME: give parmetis the communicator!
76  _partitioner = UniquePtr<Partitioner>(new ParmetisPartitioner());
77 }
78 #endif
79 
80 
82 {
83  this->clear(); // Free nodes and elements
84 }
dof_id_type _next_free_local_node_id
processor_id_type n_processors() const
UniquePtr< Partitioner > _partitioner
Definition: mesh_base.h:1304
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
dof_id_type _next_free_unpartitioned_node_id
UnstructuredMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
dof_id_type _next_free_unpartitioned_elem_id
DistributedMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
unique_id_type _next_unpartitioned_unique_id
dof_id_type _next_free_local_elem_id
processor_id_type processor_id()
Definition: libmesh_base.h:96
virtual void clear()
Definition: function_base.h:85
processor_id_type processor_id() const
libMesh::DistributedMesh::DistributedMesh ( unsigned char  dim = 1)
explicit

Deprecated constructor. Takes dim, the dimension of the mesh. The mesh dimension can be changed (and may automatically be changed by mesh generation/loading) later.

libMesh::DistributedMesh::DistributedMesh ( const UnstructuredMesh other_mesh)

Copy-constructor. This should be able to take a replicated or distributed mesh.

Definition at line 128 of file distributed_mesh.C.

References libMesh::MeshBase::_next_unique_id, libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::MeshBase::get_boundary_info(), libMesh::MeshBase::parallel_max_unique_id(), and update_parallel_id_counts().

128  :
129  UnstructuredMesh (other_mesh), _is_serial(other_mesh.is_serial()),
130  _n_nodes(0), _n_elem(0), _max_node_id(0), _max_elem_id(0),
135 {
136  this->copy_nodes_and_elements(other_mesh);
137  this->get_boundary_info() = other_mesh.get_boundary_info();
138 
139 #ifdef LIBMESH_ENABLE_UNIQUE_ID
140  _next_unique_id = other_mesh.parallel_max_unique_id();
141 #endif
143 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
virtual void copy_nodes_and_elements(const UnstructuredMesh &other_mesh, const bool skip_find_neighbors=false)
dof_id_type _next_free_local_node_id
processor_id_type n_processors() const
virtual void update_parallel_id_counts() libmesh_override
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
dof_id_type _next_free_unpartitioned_node_id
UnstructuredMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
dof_id_type _next_free_unpartitioned_elem_id
dof_id_type _next_free_local_elem_id
processor_id_type processor_id() const
libMesh::DistributedMesh::DistributedMesh ( const DistributedMesh other_mesh)

Copy-constructor, possibly specialized for a distributed mesh.

Definition at line 90 of file distributed_mesh.C.

References _extra_ghost_elems, _max_elem_id, _max_node_id, _n_elem, _n_nodes, _next_free_local_elem_id, _next_free_local_node_id, _next_free_unpartitioned_elem_id, _next_free_unpartitioned_node_id, libMesh::MeshBase::_next_unique_id, _next_unpartitioned_unique_id, libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::MeshBase::get_boundary_info(), max_elem_id(), max_node_id(), n_elem(), and n_nodes().

90  :
91  UnstructuredMesh (other_mesh), _is_serial(other_mesh._is_serial),
97 {
98  this->copy_nodes_and_elements(other_mesh);
99  _n_nodes = other_mesh.n_nodes();
100  _n_elem = other_mesh.n_elem();
101  _max_node_id = other_mesh.max_node_id();
102  _max_elem_id = other_mesh.max_elem_id();
104  other_mesh._next_free_local_node_id;
106  other_mesh._next_free_local_elem_id;
108  other_mesh._next_free_unpartitioned_node_id;
110  other_mesh._next_free_unpartitioned_elem_id;
111 #ifdef LIBMESH_ENABLE_UNIQUE_ID
113  other_mesh._next_unique_id;
115  other_mesh._next_unpartitioned_unique_id;
116 #endif
117  this->get_boundary_info() = other_mesh.get_boundary_info();
118 
119  // Need to copy extra_ghost_elems
120  for(std::set<Elem *>::iterator it = other_mesh._extra_ghost_elems.begin();
121  it != other_mesh._extra_ghost_elems.end();
122  ++it)
123  _extra_ghost_elems.insert(this->elem_ptr((*it)->id()));
124 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
virtual void copy_nodes_and_elements(const UnstructuredMesh &other_mesh, const bool skip_find_neighbors=false)
dof_id_type _next_free_local_node_id
processor_id_type n_processors() const
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
std::set< Elem * > _extra_ghost_elems
dof_id_type _next_free_unpartitioned_node_id
UnstructuredMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
dof_id_type _next_free_unpartitioned_elem_id
unique_id_type _next_unpartitioned_unique_id
dof_id_type _next_free_local_elem_id
processor_id_type processor_id() const
virtual libMesh::DistributedMesh::~DistributedMesh ( )
virtual

Destructor.

Referenced by clone(), and DistributedMesh().

Member Function Documentation

virtual element_iterator libMesh::DistributedMesh::active_elements_begin ( )
virtual

Active, local, and negation forms of the element iterators described above. An "active" element is an element without children (i.e. has not been refined). A "local" element is one whose processor_id() matches the current processor.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_local_elements_begin ( )
virtual
virtual const_element_iterator libMesh::DistributedMesh::active_local_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_local_elements_end ( )
virtual
virtual const_element_iterator libMesh::DistributedMesh::active_local_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_local_subdomain_elements_begin ( subdomain_id_type  subdomain_id)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_local_subdomain_elements_begin ( subdomain_id_type  subdomain_id) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_local_subdomain_elements_end ( subdomain_id_type  subdomain_id)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_local_subdomain_elements_end ( subdomain_id_type  subdomain_id) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::active_nodes_begin ( )
virtual

Iterate over only the active nodes in the Mesh.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::active_nodes_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::active_nodes_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::active_nodes_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_not_local_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_not_local_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_not_local_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_not_local_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_pid_elements_begin ( processor_id_type  proc_id)
virtual

Implements libMesh::MeshBase.

Referenced by n_active_elem(), and reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_pid_elements_begin ( processor_id_type  proc_id) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_pid_elements_end ( processor_id_type  proc_id)
virtual

Implements libMesh::MeshBase.

Referenced by n_active_elem(), and reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_pid_elements_end ( processor_id_type  proc_id) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_semilocal_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_semilocal_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_semilocal_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_semilocal_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_subdomain_elements_begin ( subdomain_id_type  subdomain_id)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_subdomain_elements_begin ( subdomain_id_type  subdomain_id) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_subdomain_elements_end ( subdomain_id_type  subdomain_id)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_subdomain_elements_end ( subdomain_id_type  subdomain_id) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_subdomain_set_elements_begin ( std::set< subdomain_id_type ss)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_subdomain_set_elements_begin ( std::set< subdomain_id_type ss) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_subdomain_set_elements_end ( std::set< subdomain_id_type ss)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_subdomain_set_elements_end ( std::set< subdomain_id_type ss) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_type_elements_begin ( ElemType  type)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_type_elements_begin ( ElemType  type) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_type_elements_end ( ElemType  type)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_type_elements_end ( ElemType  type) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_unpartitioned_elements_begin ( )
virtual

Iterate over active unpartitioned elements in the Mesh.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_unpartitioned_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::active_unpartitioned_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::active_unpartitioned_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

Elem * libMesh::DistributedMesh::add_elem ( Elem e)
virtual

Add elem e to the end of the element array. To add an element locally, set e->processor_id() before adding it. To ensure a specific element id, call e->set_id() before adding it; only do this in parallel if you are manually keeping ids consistent.

Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Implements libMesh::MeshBase.

Definition at line 408 of file distributed_mesh.C.

References _elements, _max_elem_id, _n_elem, _next_free_local_elem_id, _next_free_unpartitioned_elem_id, libMesh::MeshBase::_next_unique_id, _next_unpartitioned_unique_id, libMesh::DofObject::id(), libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), std::max(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::DofObject::set_id(), libMesh::DofObject::set_unique_id(), libMesh::DofObject::valid_id(), and libMesh::DofObject::valid_unique_id().

Referenced by add_extra_ghost_elem(), and reserve_elem().

409 {
410  // Don't try to add NULLs!
411  libmesh_assert(e);
412 
413  // Trying to add an existing element is a no-op
414  if (e->valid_id() && _elements[e->id()] == e)
415  return e;
416 
417  const processor_id_type elem_procid = e->processor_id();
418 
419  if (!e->valid_id())
420  {
421  // We should only be creating new ids past the end of the range
422  // of existing ids
423  libmesh_assert_greater_equal(_next_free_unpartitioned_elem_id,
424  _max_elem_id);
425  libmesh_assert_greater_equal(_next_free_local_elem_id, _max_elem_id);
426 
427  // Use the unpartitioned ids for unpartitioned elems, and
428  // temporarily for ghost elems
430  if (elem_procid == this->processor_id())
431  next_id = &_next_free_local_elem_id;
432  e->set_id (*next_id);
433  }
434 
435  {
436  // Advance next_ids up high enough that each is pointing to an
437  // unused id and any subsequent increments will still point us
438  // to unused ids
440  static_cast<dof_id_type>(e->id()+1));
441 
444  ((_max_elem_id-1) / (this->n_processors() + 1) + 1) *
445  (this->n_processors() + 1) + this->n_processors();
448  ((_max_elem_id + this->n_processors() - 1) / (this->n_processors() + 1) + 1) *
449  (this->n_processors() + 1) + this->processor_id();
450 
451 #ifndef NDEBUG
452  // We need a const mapvector so we don't inadvertently create
453  // NULL entries when testing for non-NULL ones
454  const mapvector<Elem *, dof_id_type> & const_elements = _elements;
455 #endif
457  libmesh_assert(!const_elements[_next_free_local_elem_id]);
458  }
459 
460  // Don't try to overwrite existing elems
461  libmesh_assert (!_elements[e->id()]);
462 
463  _elements[e->id()] = e;
464 
465  // Try to make the cached elem data more accurate
466  if (elem_procid == this->processor_id() ||
467  elem_procid == DofObject::invalid_processor_id)
468  _n_elem++;
469 
470 #ifdef LIBMESH_ENABLE_UNIQUE_ID
471  if (!e->valid_unique_id())
472  {
473  if (processor_id() == e->processor_id())
474  {
475  e->set_unique_id() = _next_unique_id;
476  _next_unique_id += this->n_processors() + 1;
477  }
478  else
479  {
480  e->set_unique_id() = _next_unpartitioned_unique_id;
482  }
483  }
484 #endif
485 
486  // Unpartitioned elems should be added on every processor
487  // And shouldn't be added in the same batch as ghost elems
488  // But we might be just adding on processor 0 to
489  // broadcast later
490  // #ifdef DEBUG
491  // if (elem_procid == DofObject::invalid_processor_id)
492  // {
493  // dof_id_type elem_id = e->id();
494  // this->comm().max(elem_id);
495  // libmesh_assert_equal_to (elem_id, e->id());
496  // }
497  // #endif
498 
499  return e;
500 }
mapvector< Elem *, dof_id_type > _elements
processor_id_type n_processors() const
uint8_t processor_id_type
Definition: id_types.h:99
long double max(long double a, double b)
libmesh_assert(j)
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
dof_id_type _next_free_unpartitioned_elem_id
unique_id_type _next_unpartitioned_unique_id
dof_id_type _next_free_local_elem_id
processor_id_type processor_id() const
uint8_t dof_id_type
Definition: id_types.h:64
void libMesh::DistributedMesh::add_extra_ghost_elem ( Elem e)
virtual

Inserts the element and adds it to a list of elements that should not get deleted or have their descendants deleted by delete_remote_elements. This is handy for inserting otherwise off-processor elements that you want to keep track of on this processor.

Definition at line 1421 of file distributed_mesh.C.

References _extra_ghost_elems, and add_elem().

Referenced by is_replicated().

1422 {
1423  // First add the elem like normal
1424  add_elem(e);
1425 
1426  // Now add it to the set that won't be deleted when we call
1427  // delete_remote_elements()
1428  _extra_ghost_elems.insert(e);
1429 }
std::set< Elem * > _extra_ghost_elems
virtual Elem * add_elem(Elem *e) libmesh_override
void libMesh::MeshBase::add_ghosting_functor ( GhostingFunctor ghosting_functor)
inlineinherited

Adds a functor which can specify ghosting requirements for use on distributed meshes. Multiple ghosting functors can be added; any element which is required by any functor will be ghosted.

GhostingFunctor memory must be managed by the code which calls this function; the GhostingFunctor lifetime is expected to extend until either the functor is removed or the Mesh is destructed.

Definition at line 743 of file mesh_base.h.

References libMesh::MeshBase::_ghosting_functors, and libMesh::MeshBase::remove_ghosting_functor().

Referenced by libMesh::DofMap::add_algebraic_ghosting_functor(), and libMesh::DofMap::add_coupling_functor().

744  { _ghosting_functors.insert(&ghosting_functor); }
std::set< GhostingFunctor * > _ghosting_functors
Definition: mesh_base.h:1367
Node * libMesh::DistributedMesh::add_node ( Node n)
virtual

Add Node n to the end of the vertex array.

Implements libMesh::MeshBase.

Definition at line 605 of file distributed_mesh.C.

References _max_node_id, _n_nodes, _next_free_local_node_id, _next_free_unpartitioned_node_id, libMesh::MeshBase::_next_unique_id, _next_unpartitioned_unique_id, _nodes, libMesh::DofObject::id(), libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), std::max(), libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::DofObject::set_id(), libMesh::DofObject::set_unique_id(), libMesh::DofObject::valid_id(), and libMesh::DofObject::valid_unique_id().

Referenced by add_point(), insert_node(), and reserve_elem().

606 {
607  // Don't try to add NULLs!
608  libmesh_assert(n);
609 
610  // Trying to add an existing node is a no-op
611  if (n->valid_id() && _nodes[n->id()] == n)
612  return n;
613 
614  const processor_id_type node_procid = n->processor_id();
615 
616  if (!n->valid_id())
617  {
618  // We should only be creating new ids past the end of the range
619  // of existing ids
620  libmesh_assert_greater_equal(_next_free_unpartitioned_node_id,
621  _max_node_id);
622  libmesh_assert_greater_equal(_next_free_local_node_id, _max_node_id);
623 
624  // Use the unpartitioned ids for unpartitioned nodes,
625  // and temporarily for ghost nodes
627  if (node_procid == this->processor_id())
628  next_id = &_next_free_local_node_id;
629  n->set_id (*next_id);
630  }
631 
632  {
633  // Advance next_ids up high enough that each is pointing to an
634  // unused id and any subsequent increments will still point us
635  // to unused ids
637  static_cast<dof_id_type>(n->id()+1));
638 
641  ((_max_node_id-1) / (this->n_processors() + 1) + 1) *
642  (this->n_processors() + 1) + this->n_processors();
645  ((_max_node_id + this->n_processors() - 1) / (this->n_processors() + 1) + 1) *
646  (this->n_processors() + 1) + this->processor_id();
647 
648 #ifndef NDEBUG
649  // We need a const mapvector so we don't inadvertently create
650  // NULL entries when testing for non-NULL ones
651  const mapvector<Node *,dof_id_type> & const_nodes = _nodes;
652 #endif
655  }
656 
657  // Don't try to overwrite existing nodes
658  libmesh_assert (!_nodes[n->id()]);
659 
660  _nodes[n->id()] = n;
661 
662  // Try to make the cached node data more accurate
663  if (node_procid == this->processor_id() ||
664  node_procid == DofObject::invalid_processor_id)
665  _n_nodes++;
666 
667 #ifdef LIBMESH_ENABLE_UNIQUE_ID
668  if (!n->valid_unique_id())
669  {
670  if (processor_id() == n->processor_id())
671  {
672  n->set_unique_id() = _next_unique_id;
673  _next_unique_id += this->n_processors();
674  }
675  else
676  {
677  n->set_unique_id() = _next_unpartitioned_unique_id;
679  }
680  }
681 #endif
682 
683 
684  // Unpartitioned nodes should be added on every processor
685  // And shouldn't be added in the same batch as ghost nodes
686  // But we might be just adding on processor 0 to
687  // broadcast later
688  // #ifdef DEBUG
689  // if (node_procid == DofObject::invalid_processor_id)
690  // {
691  // dof_id_type node_id = n->id();
692  // this->comm().max(node_id);
693  // libmesh_assert_equal_to (node_id, n->id());
694  // }
695  // #endif
696 
697  return n;
698 }
dof_id_type _next_free_local_node_id
processor_id_type n_processors() const
uint8_t processor_id_type
Definition: id_types.h:99
long double max(long double a, double b)
libmesh_assert(j)
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
mapvector< Node *, dof_id_type > _nodes
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
dof_id_type _next_free_unpartitioned_node_id
unique_id_type _next_unpartitioned_unique_id
processor_id_type processor_id() const
uint8_t dof_id_type
Definition: id_types.h:64
Node * libMesh::DistributedMesh::add_point ( const Point p,
const dof_id_type  id = DofObject::invalid_id,
const processor_id_type  proc_id = DofObject::invalid_processor_id 
)
virtual

functions for adding /deleting nodes elements.

Implements libMesh::MeshBase.

Definition at line 581 of file distributed_mesh.C.

References _nodes, add_node(), libMesh::Node::build(), libMesh::DofObject::id(), libMesh::libmesh_assert(), and libMesh::DofObject::processor_id().

Referenced by reserve_elem().

584 {
585  if (_nodes.count(id))
586  {
587  Node * n = _nodes[id];
588  libmesh_assert (n);
589  libmesh_assert_equal_to (n->id(), id);
590 
591  *n = p;
592  n->processor_id() = proc_id;
593 
594  return n;
595  }
596 
597  Node * n = Node::build(p, id).release();
598  n->processor_id() = proc_id;
599 
600  return DistributedMesh::add_node(n);
601 }
static UniquePtr< Node > build(const Node &n)
Definition: node.h:284
libmesh_assert(j)
virtual Node * add_node(Node *n) libmesh_override
mapvector< Node *, dof_id_type > _nodes
void libMesh::UnstructuredMesh::all_first_order ( )
virtualinherited

Converts a mesh with higher-order elements into a mesh with linear elements. For example, a mesh consisting of Tet10 will be converted to a mesh with Tet4 etc.

Prepare to identify (and then delete) a bunch of no-longer-used nodes.

Loop over the high-ordered elements. First make sure they are indeed high-order, and then replace them with an equivalent first-order element.

If the second order element had any boundary conditions they should be transfered to the first-order element. The old boundary conditions will be removed from the BoundaryInfo data structure by insert_elem.

Implements libMesh::MeshBase.

Definition at line 303 of file mesh_modification.C.

References libMesh::MeshBase::_is_prepared, libMesh::Elem::add_child(), libMesh::Elem::build(), libMesh::Elem::child_ptr(), libMesh::BoundaryInfo::copy_boundary_ids(), libMesh::MeshBase::delete_node(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), libMesh::Elem::first_order_equivalent_type(), libMesh::MeshBase::get_boundary_info(), libMesh::Elem::has_children(), libMesh::DofObject::id(), libMesh::MeshBase::insert_elem(), libMesh::libmesh_assert(), libMesh::MeshBase::max_node_id(), libMesh::Elem::n_children(), libMesh::Elem::n_sides(), libMesh::Elem::n_vertices(), libMesh::Elem::neighbor(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::node_id(), libMesh::Elem::node_ptr(), libMesh::MeshBase::nodes_begin(), libMesh::MeshBase::nodes_end(), libMesh::Elem::p_level(), libMesh::Elem::p_refinement_flag(), libMesh::Elem::parent(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::Elem::refinement_flag(), libMesh::BoundaryInfo::regenerate_id_sets(), libMesh::remote_elem, libMesh::MeshBase::renumber_nodes_and_elements(), libMesh::Elem::replace_child(), libMesh::DofObject::set_id(), libMesh::Elem::set_neighbor(), libMesh::Elem::set_node(), libMesh::Partitioner::set_node_processor_ids(), libMesh::Elem::set_p_level(), libMesh::Elem::set_p_refinement_flag(), libMesh::Elem::set_parent(), libMesh::Elem::set_refinement_flag(), libMesh::DofObject::set_unique_id(), libMesh::Elem::subdomain_id(), libMesh::Elem::type(), libMesh::DofObject::unique_id(), and libMesh::Elem::which_child_am_i().

304 {
305  /*
306  * when the mesh is not prepared,
307  * at least renumber the nodes and
308  * elements, so that the node ids
309  * are correct
310  */
311  if (!this->_is_prepared)
313 
314  START_LOG("all_first_order()", "Mesh");
315 
319  std::vector<bool> node_touched_by_me(this->max_node_id(), false);
320 
326  element_iterator endit = elements_end();
327  for (element_iterator it = elements_begin();
328  it != endit; ++it)
329  {
330  Elem * so_elem = *it;
331 
332  libmesh_assert(so_elem);
333 
334  /*
335  * build the first-order equivalent, add to
336  * the new_elements list.
337  */
338  Elem * lo_elem = Elem::build
340  (so_elem->type()), so_elem->parent()).release();
341 
342  for (unsigned int s=0; s != so_elem->n_sides(); ++s)
343  if (so_elem->neighbor_ptr(s) == remote_elem)
344  lo_elem->set_neighbor(s, const_cast<RemoteElem *>(remote_elem));
345 
346 #ifdef LIBMESH_ENABLE_AMR
347  /*
348  * Reset the parent links of any child elements
349  */
350  if (so_elem->has_children())
351  for (unsigned int c=0; c != so_elem->n_children(); ++c)
352  {
353  so_elem->child_ptr(c)->set_parent(lo_elem);
354  lo_elem->add_child(so_elem->child_ptr(c), c);
355  }
356 
357  /*
358  * Reset the child link of any parent element
359  */
360  if (so_elem->parent())
361  {
362  unsigned int c =
363  so_elem->parent()->which_child_am_i(so_elem);
364  lo_elem->parent()->replace_child(lo_elem, c);
365  }
366 
367  /*
368  * Copy as much data to the new element as makes sense
369  */
370  lo_elem->set_p_level(so_elem->p_level());
371  lo_elem->set_refinement_flag(so_elem->refinement_flag());
372  lo_elem->set_p_refinement_flag(so_elem->p_refinement_flag());
373 #endif
374 
375  libmesh_assert_equal_to (lo_elem->n_vertices(), so_elem->n_vertices());
376 
377  /*
378  * By definition the vertices of the linear and
379  * second order element are identically numbered.
380  * transfer these.
381  */
382  for (unsigned int v=0; v < so_elem->n_vertices(); v++)
383  {
384  lo_elem->set_node(v) = so_elem->node_ptr(v);
385  node_touched_by_me[lo_elem->node_id(v)] = true;
386  }
387 
388  /*
389  * find_neighbors relies on remote_elem neighbor links being
390  * properly maintained.
391  */
392  for (unsigned short s=0; s<so_elem->n_sides(); s++)
393  {
394  if (so_elem->neighbor(s) == remote_elem)
395  lo_elem->set_neighbor(s, const_cast<RemoteElem*>(remote_elem));
396  }
397 
405  (this->get_boundary_info(), so_elem, lo_elem);
406 
407  /*
408  * The new first-order element is ready.
409  * Inserting it into the mesh will replace and delete
410  * the second-order element.
411  */
412  lo_elem->set_id(so_elem->id());
413 #ifdef LIBMESH_ENABLE_UNIQUE_ID
414  lo_elem->set_unique_id() = so_elem->unique_id();
415 #endif
416  lo_elem->processor_id() = so_elem->processor_id();
417  lo_elem->subdomain_id() = so_elem->subdomain_id();
418  this->insert_elem(lo_elem);
419  }
420 
421  const MeshBase::node_iterator nd_end = this->nodes_end();
422  MeshBase::node_iterator nd = this->nodes_begin();
423  while (nd != nd_end)
424  {
425  Node * the_node = *nd;
426  ++nd;
427  if (!node_touched_by_me[the_node->id()])
428  this->delete_node(the_node);
429  }
430 
431  // If crazy people applied boundary info to non-vertices and then
432  // deleted those non-vertices, we should make sure their boundary id
433  // caches are correct.
435 
436  STOP_LOG("all_first_order()", "Mesh");
437 
438  // On hanging nodes that used to also be second order nodes, we
439  // might now have an invalid nodal processor_id()
441 
442  // delete or renumber nodes, etc
443  this->prepare_for_use(/*skip_renumber =*/ false);
444 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
static UniquePtr< Elem > build(const ElemType type, Elem *p=libmesh_nullptr)
Definition: elem.C:234
static void set_node_processor_ids(MeshBase &mesh)
Definition: partitioner.C:431
virtual dof_id_type max_node_id() const =0
libmesh_assert(j)
virtual node_iterator nodes_begin()=0
virtual element_iterator elements_begin()=0
virtual element_iterator elements_end()=0
virtual void delete_node(Node *n)=0
void prepare_for_use(const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
Definition: mesh_base.C:174
virtual Elem * insert_elem(Elem *e)=0
virtual node_iterator nodes_end()=0
void copy_boundary_ids(const BoundaryInfo &old_boundary_info, const Elem *const old_elem, const Elem *const new_elem)
static ElemType first_order_equivalent_type(const ElemType et)
Definition: elem.C:2573
virtual void renumber_nodes_and_elements()=0
const RemoteElem * remote_elem
Definition: remote_elem.C:57
void libMesh::UnstructuredMesh::all_second_order ( const bool  full_ordered = true)
virtualinherited

Converts a (conforming, non-refined) mesh with linear elements into a mesh with second-order elements. For example, a mesh consisting of Tet4 will be converted to a mesh with Tet10 etc. Note that for some elements like Hex8 there exist two higher order equivalents, Hex20 and Hex27. When full_ordered is true (default), then Hex27 is built. Otherwise, Hex20 is built. The same holds obviously for Quad4, Prism6 ...

Loop over the low-ordered elements in the elements vector. First make sure they _are indeed low-order, and then replace them with an equivalent second-order element. Don't forget to delete the low-order element, or else it will leak!

If the linear element had any boundary conditions they should be transfered to the second-order element. The old boundary conditions will be removed from the BoundaryInfo data structure by insert_elem.

Also, prepare_for_use() will reconstruct most of our neighbor links, but if we have any remote_elem links in a distributed mesh, they need to be preserved. We do that in the same loop here.

Implements libMesh::MeshBase.

Definition at line 448 of file mesh_modification.C.

References libMesh::MeshBase::_is_prepared, libMesh::MeshBase::add_point(), libMesh::Elem::build(), libMesh::ParallelObject::comm(), libMesh::BoundaryInfo::copy_boundary_ids(), libMesh::Elem::default_order(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), libMesh::FIRST, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::MeshBase::insert_elem(), libMesh::DofObject::invalid_id, libMesh::MeshBase::is_serial(), libMesh::Elem::level(), libMesh::libmesh_assert(), libMesh::MeshCommunication::make_nodes_parallel_consistent(), libMesh::Parallel::Communicator::max(), libMesh::MeshBase::mesh_dimension(), libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_nodes(), libMesh::Elem::n_sides(), libMesh::Elem::n_vertices(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::node_ptr(), libMesh::MeshBase::point(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::Real, libMesh::remote_elem, libMesh::MeshBase::renumber_nodes_and_elements(), libMesh::MeshBase::reserve_nodes(), libMesh::Elem::second_order_equivalent_type(), libMesh::Elem::subdomain_id(), libMesh::Elem::type(), and libMesh::DofObject::unique_id().

Referenced by libMesh::MeshTools::Generation::build_cube(), and libMesh::MeshTools::Generation::build_sphere().

449 {
450  // This function must be run on all processors at once
451  parallel_object_only();
452 
453  /*
454  * when the mesh is not prepared,
455  * at least renumber the nodes and
456  * elements, so that the node ids
457  * are correct
458  */
459  if (!this->_is_prepared)
461 
462  /*
463  * If the mesh is empty
464  * then we have nothing to do
465  */
466  if (!this->n_elem())
467  return;
468 
469  /*
470  * If the mesh is already second order
471  * then we have nothing to do.
472  * We have to test for this in a round-about way to avoid
473  * a bug on distributed parallel meshes with more processors
474  * than elements.
475  */
476  bool already_second_order = false;
477  if (this->elements_begin() != this->elements_end() &&
478  (*(this->elements_begin()))->default_order() != FIRST)
479  already_second_order = true;
480  this->comm().max(already_second_order);
481  if (already_second_order)
482  return;
483 
484  START_LOG("all_second_order()", "Mesh");
485 
486  /*
487  * this map helps in identifying second order
488  * nodes. Namely, a second-order node:
489  * - edge node
490  * - face node
491  * - bubble node
492  * is uniquely defined through a set of adjacent
493  * vertices. This set of adjacent vertices is
494  * used to identify already added higher-order
495  * nodes. We are safe to use node id's since we
496  * make sure that these are correctly numbered.
497  */
498  std::map<std::vector<dof_id_type>, Node *> adj_vertices_to_so_nodes;
499 
500  /*
501  * for speed-up of the \p add_point() method, we
502  * can reserve memory. Guess the number of additional
503  * nodes for different dimensions
504  */
505  switch (this->mesh_dimension())
506  {
507  case 1:
508  /*
509  * in 1D, there can only be order-increase from Edge2
510  * to Edge3. Something like 1/2 of n_nodes() have
511  * to be added
512  */
513  this->reserve_nodes(static_cast<unsigned int>
514  (1.5*static_cast<double>(this->n_nodes())));
515  break;
516 
517  case 2:
518  /*
519  * in 2D, either refine from Tri3 to Tri6 (double the nodes)
520  * or from Quad4 to Quad8 (again, double) or Quad9 (2.25 that much)
521  */
522  this->reserve_nodes(static_cast<unsigned int>
523  (2*static_cast<double>(this->n_nodes())));
524  break;
525 
526 
527  case 3:
528  /*
529  * in 3D, either refine from Tet4 to Tet10 (factor = 2.5) up to
530  * Hex8 to Hex27 (something > 3). Since in 3D there _are_ already
531  * quite some nodes, and since we do not want to overburden the memory by
532  * a too conservative guess, use the lower bound
533  */
534  this->reserve_nodes(static_cast<unsigned int>
535  (2.5*static_cast<double>(this->n_nodes())));
536  break;
537 
538  default:
539  // Hm?
540  libmesh_error_msg("Unknown mesh dimension " << this->mesh_dimension());
541  }
542 
543 
544 
545  /*
546  * form a vector that will hold the node id's of
547  * the vertices that are adjacent to the son-th
548  * second-order node. Pull this outside of the
549  * loop so that silly compilers don't repeatedly
550  * create and destroy the vector.
551  */
552  std::vector<dof_id_type> adjacent_vertices_ids;
553 
560  element_iterator
561  it = elements_begin(),
562  endit = elements_end();
563 
564  for (; it != endit; ++it)
565  {
566  // the linear-order element
567  Elem * lo_elem = *it;
568 
569  libmesh_assert(lo_elem);
570 
571  // make sure it is linear order
572  if (lo_elem->default_order() != FIRST)
573  libmesh_error_msg("ERROR: This is not a linear element: type=" << lo_elem->type());
574 
575  // this does _not_ work for refined elements
576  libmesh_assert_equal_to (lo_elem->level (), 0);
577 
578  /*
579  * build the second-order equivalent, add to
580  * the new_elements list. Note that this here
581  * is the only point where \p full_ordered
582  * is necessary. The remaining code works well
583  * for either type of seconrd-order equivalent, e.g.
584  * Hex20 or Hex27, as equivalents for Hex8
585  */
586  Elem * so_elem =
588  full_ordered) ).release();
589 
590  libmesh_assert_equal_to (lo_elem->n_vertices(), so_elem->n_vertices());
591 
592 
593  /*
594  * By definition the vertices of the linear and
595  * second order element are identically numbered.
596  * transfer these.
597  */
598  for (unsigned int v=0; v < lo_elem->n_vertices(); v++)
599  so_elem->set_node(v) = lo_elem->node_ptr(v);
600 
601  /*
602  * Now handle the additional mid-side nodes. This
603  * is simply handled through a map that remembers
604  * the already-added nodes. This map maps the global
605  * ids of the vertices (that uniquely define this
606  * higher-order node) to the new node.
607  * Notation: son = second-order node
608  */
609  const unsigned int son_begin = so_elem->n_vertices();
610  const unsigned int son_end = so_elem->n_nodes();
611 
612 
613  for (unsigned int son=son_begin; son<son_end; son++)
614  {
615  const unsigned int n_adjacent_vertices =
616  so_elem->n_second_order_adjacent_vertices(son);
617 
618  adjacent_vertices_ids.resize(n_adjacent_vertices);
619 
620  for (unsigned int v=0; v<n_adjacent_vertices; v++)
621  adjacent_vertices_ids[v] =
622  so_elem->node_id( so_elem->second_order_adjacent_vertex(son,v) );
623 
624  /*
625  * \p adjacent_vertices_ids is now in order of the current
626  * side. sort it, so that comparisons with the
627  * \p adjacent_vertices_ids created through other elements'
628  * sides can match
629  */
630  std::sort(adjacent_vertices_ids.begin(),
631  adjacent_vertices_ids.end());
632 
633 
634  // does this set of vertices already has a mid-node added?
635  std::pair<std::map<std::vector<dof_id_type>, Node *>::iterator,
636  std::map<std::vector<dof_id_type>, Node *>::iterator>
637  pos = adj_vertices_to_so_nodes.equal_range (adjacent_vertices_ids);
638 
639  // no, not added yet
640  if (pos.first == pos.second)
641  {
642  /*
643  * for this set of vertices, there is no
644  * second_order node yet. Add it.
645  *
646  * compute the location of the new node as
647  * the average over the adjacent vertices.
648  */
649  Point new_location = this->point(adjacent_vertices_ids[0]);
650  for (unsigned int v=1; v<n_adjacent_vertices; v++)
651  new_location += this->point(adjacent_vertices_ids[v]);
652 
653  new_location /= static_cast<Real>(n_adjacent_vertices);
654 
655  /* Add the new point to the mesh.
656  * If we are on a serialized mesh, then we're doing this
657  * all in sync, and the node processor_id will be
658  * consistent between processors.
659  * If we are on a distributed mesh, we can fix
660  * inconsistent processor ids later, but only if every
661  * processor gives new nodes a *locally* consistent
662  * processor id, so we'll give the new node the
663  * processor id of an adjacent element for now and then
664  * we'll update that later if appropriate.
665  */
666  Node * so_node = this->add_point
667  (new_location, DofObject::invalid_id,
668  lo_elem->processor_id());
669 
670  /*
671  * insert the new node with its defining vertex
672  * set into the map, and relocate pos to this
673  * new entry, so that the so_elem can use
674  * \p pos for inserting the node
675  */
676  adj_vertices_to_so_nodes.insert(pos.first,
677  std::make_pair(adjacent_vertices_ids,
678  so_node));
679 
680  so_elem->set_node(son) = so_node;
681  }
682  // yes, already added.
683  else
684  {
685  Node *so_node = pos.first->second;
686  libmesh_assert(so_node);
687 
688  so_elem->set_node(son) = so_node;
689 
690  // We need to ensure that the processor who should own a
691  // node *knows* they own the node.
692  if (so_node->processor_id() > lo_elem->processor_id())
693  so_node->processor_id() = lo_elem->processor_id();
694  }
695  }
696 
697  /*
698  * find_neighbors relies on remote_elem neighbor links being
699  * properly maintained.
700  */
701  for (unsigned short s=0; s<lo_elem->n_sides(); s++)
702  {
703  if (lo_elem->neighbor_ptr(s) == remote_elem)
704  so_elem->set_neighbor(s, const_cast<RemoteElem*>(remote_elem));
705  }
706 
719  (this->get_boundary_info(), lo_elem, so_elem);
720 
721  /*
722  * The new second-order element is ready.
723  * Inserting it into the mesh will replace and delete
724  * the first-order element.
725  */
726  so_elem->set_id(lo_elem->id());
727 #ifdef LIBMESH_ENABLE_UNIQUE_ID
728  so_elem->set_unique_id() = lo_elem->unique_id();
729 #endif
730  so_elem->processor_id() = lo_elem->processor_id();
731  so_elem->subdomain_id() = lo_elem->subdomain_id();
732  this->insert_elem(so_elem);
733  }
734 
735  // we can clear the map
736  adj_vertices_to_so_nodes.clear();
737 
738 
739  STOP_LOG("all_second_order()", "Mesh");
740 
741  // In a DistributedMesh our ghost node processor ids may be bad,
742  // the ids of nodes touching remote elements may be inconsistent,
743  // and unique_ids of newly added non-local nodes remain unset.
744  // make_nodes_parallel_consistent() will fix all this.
745  if (!this->is_serial())
746  MeshCommunication().make_nodes_parallel_consistent (*this);
747 
748  // renumber nodes, elements etc
749  this->prepare_for_use(/*skip_renumber =*/ false);
750 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
virtual void reserve_nodes(const dof_id_type nn)=0
virtual bool is_serial() const
Definition: mesh_base.h:134
virtual const Point & point(const dof_id_type i) const =0
static UniquePtr< Elem > build(const ElemType type, Elem *p=libmesh_nullptr)
Definition: elem.C:234
virtual Node * add_point(const Point &p, const dof_id_type id=DofObject::invalid_id, const processor_id_type proc_id=DofObject::invalid_processor_id)=0
libmesh_assert(j)
virtual element_iterator elements_begin()=0
virtual element_iterator elements_end()=0
static const dof_id_type invalid_id
Definition: dof_object.h:335
void prepare_for_use(const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
Definition: mesh_base.C:174
static ElemType second_order_equivalent_type(const ElemType et, const bool full_ordered=true)
Definition: elem.C:2631
virtual Elem * insert_elem(Elem *e)=0
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void copy_boundary_ids(const BoundaryInfo &old_boundary_info, const Elem *const old_elem, const Elem *const new_elem)
const Parallel::Communicator & comm() const
unsigned int mesh_dimension() const
Definition: mesh_base.C:148
virtual dof_id_type n_nodes() const =0
virtual dof_id_type n_elem() const =0
virtual void renumber_nodes_and_elements()=0
const RemoteElem * remote_elem
Definition: remote_elem.C:57
void libMesh::DistributedMesh::allgather ( )
virtual

Gathers all elements and nodes of the mesh onto every processor

Reimplemented from libMesh::MeshBase.

Definition at line 1432 of file distributed_mesh.C.

References _is_serial, libMesh::MeshCommunication::allgather(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libmesh_assert_valid_parallel_flags(), libmesh_assert_valid_parallel_ids(), max_elem_id(), max_node_id(), n_elem(), n_nodes(), parallel_max_elem_id(), parallel_max_node_id(), parallel_n_elem(), and parallel_n_nodes().

Referenced by is_replicated().

1433 {
1434  if (_is_serial)
1435  return;
1436  _is_serial = true;
1437  MeshCommunication().allgather(*this);
1438 
1439  // Make sure our caches are up to date and our
1440  // DofObjects are well packed
1441 #ifdef DEBUG
1442  libmesh_assert_equal_to (this->n_nodes(), this->parallel_n_nodes());
1443  libmesh_assert_equal_to (this->n_elem(), this->parallel_n_elem());
1444  const dof_id_type pmax_node_id = this->parallel_max_node_id();
1445  const dof_id_type pmax_elem_id = this->parallel_max_elem_id();
1446  libmesh_assert_equal_to (this->max_node_id(), pmax_node_id);
1447  libmesh_assert_equal_to (this->max_elem_id(), pmax_elem_id);
1448 
1449  // If we've disabled renumbering we can't be sure we're contiguous
1450  // libmesh_assert_equal_to (this->n_nodes(), this->max_node_id());
1451  // libmesh_assert_equal_to (this->n_elem(), this->max_elem_id());
1452 
1453  // Make sure our neighbor links are all fine
1455 
1456  // Make sure our ids and flags are consistent
1459 #endif
1460 }
virtual dof_id_type n_elem() const libmesh_override
dof_id_type parallel_max_elem_id() const
void libmesh_assert_valid_parallel_flags() const
dof_id_type parallel_max_node_id() const
virtual dof_id_type n_nodes() const libmesh_override
virtual dof_id_type max_node_id() const libmesh_override
virtual dof_id_type parallel_n_nodes() const libmesh_override
void libmesh_assert_valid_neighbors(const MeshBase &mesh, bool assert_valid_remote_elems=true)
Definition: mesh_tools.C:1686
virtual dof_id_type parallel_n_elem() const libmesh_override
virtual dof_id_type max_elem_id() const libmesh_override
uint8_t dof_id_type
Definition: id_types.h:64
virtual void libmesh_assert_valid_parallel_ids() const libmesh_override
void libMesh::MeshBase::allow_remote_element_removal ( bool  allow)
inlineinherited

If false is passed in then this mesh will no longer have remote elements deleted when being prepared for use; i.e. even a DistributedMesh will remain (if it is already) serialized. This may adversely affect performance and memory use.

Definition at line 716 of file mesh_base.h.

References libMesh::MeshBase::_allow_remote_element_removal.

bool _allow_remote_element_removal
Definition: mesh_base.h:1331
bool libMesh::MeshBase::allow_remote_element_removal ( ) const
inlineinherited

Definition at line 717 of file mesh_base.h.

References libMesh::MeshBase::_allow_remote_element_removal.

bool _allow_remote_element_removal
Definition: mesh_base.h:1331
void libMesh::MeshBase::allow_renumbering ( bool  allow)
inlineinherited

If false is passed in then this mesh will no longer be renumbered when being prepared for use. This may slightly adversely affect performance during subsequent element access, particulary when using a distributed mesh.

Definition at line 707 of file mesh_base.h.

References libMesh::MeshBase::_skip_renumber_nodes_and_elements.

Referenced by libMesh::UnstructuredMesh::copy_nodes_and_elements(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ErrorVector::plot_error(), libMesh::NameBasedIO::read(), and libMesh::GMVIO::read().

bool _skip_renumber_nodes_and_elements
Definition: mesh_base.h:1323
bool libMesh::MeshBase::allow_renumbering ( ) const
inlineinherited
virtual element_iterator libMesh::DistributedMesh::ancestor_elements_begin ( )
virtual

Iterate over elements for which elem->ancestor() returns true.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::ancestor_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::ancestor_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::ancestor_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::bid_nodes_begin ( boundary_id_type  bndry_id)
virtual

Iterate over nodes for which BoundaryInfo::has_boundary_id(node, bndry_id) returns true.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::bid_nodes_begin ( boundary_id_type  bndry_id) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::bid_nodes_end ( boundary_id_type  bndry_id)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::bid_nodes_end ( boundary_id_type  bndry_id) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::bnd_nodes_begin ( )
virtual

Iterate over nodes for which BoundaryInfo::n_boundary_ids(node) > 0.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::bnd_nodes_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::bnd_nodes_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::bnd_nodes_end ( ) const
virtual

Implements libMesh::MeshBase.

void libMesh::MeshBase::cache_elem_dims ( )
inherited

Search the mesh and cache the different dimenions of the elements present in the mesh. This is done in prepare_for_use(), but can be done manually by other classes after major mesh modifications.

Definition at line 609 of file mesh_base.C.

References libMesh::MeshBase::_elem_dims, libMesh::MeshBase::_spatial_dimension, libMesh::MeshBase::active_elements_begin(), libMesh::MeshBase::active_elements_end(), libMesh::ParallelObject::comm(), end, libMesh::MeshBase::mesh_dimension(), libMesh::MeshBase::node(), libMesh::MeshBase::nodes_begin(), libMesh::MeshBase::nodes_end(), and libMesh::Parallel::Communicator::set_union().

Referenced by libMesh::MeshCommunication::broadcast(), libMesh::MeshBase::get_subdomain_name_map(), and libMesh::MeshBase::prepare_for_use().

610 {
611  // This requires an inspection on every processor
612  parallel_object_only();
613 
614  // Need to clear _elem_dims first in case all elements of a
615  // particular dimension have been deleted.
616  _elem_dims.clear();
617 
618  const_element_iterator el = this->active_elements_begin();
619  const_element_iterator end = this->active_elements_end();
620 
621  for (; el!=end; ++el)
622  _elem_dims.insert((*el)->dim());
623 
624  // Some different dimension elements may only live on other processors
625  this->comm().set_union(_elem_dims);
626 
627  // If the largest element dimension found is larger than the current
628  // _spatial_dimension, increase _spatial_dimension.
629  unsigned int max_dim = this->mesh_dimension();
630  if (max_dim > _spatial_dimension)
631  _spatial_dimension = cast_int<unsigned char>(max_dim);
632 
633  // _spatial_dimension may need to increase from 1->2 or 2->3 if the
634  // mesh is full of 1D elements but they are not x-aligned, or the
635  // mesh is full of 2D elements but they are not in the x-y plane.
636  // If the mesh is x-aligned or x-y planar, we will end up checking
637  // every node's coordinates and not breaking out of the loop
638  // early...
639  if (_spatial_dimension < 3)
640  {
641  const_node_iterator node_it = this->nodes_begin();
642  const_node_iterator node_end = this->nodes_end();
643  for (; node_it != node_end; ++node_it)
644  {
645  Node & node = **node_it;
646 
647 #if LIBMESH_DIM > 1
648  // Note: the exact floating point comparison is intentional,
649  // we don't want to get tripped up by tolerances.
650  if (node(1) != 0.)
651  {
652  _spatial_dimension = 2;
653 #if LIBMESH_DIM == 2
654  // If libmesh is compiled in 2D mode, this is the
655  // largest spatial dimension possible so we can break
656  // out.
657  break;
658 #endif
659  }
660 #endif
661 
662 #if LIBMESH_DIM > 2
663  if (node(2) != 0.)
664  {
665  // Spatial dimension can't get any higher than this, so
666  // we can break out.
667  _spatial_dimension = 3;
668  break;
669  }
670 #endif
671  }
672  }
673 }
IterBase * end
unsigned char _spatial_dimension
Definition: mesh_base.h:1351
virtual node_iterator nodes_begin()=0
std::set< unsigned char > _elem_dims
Definition: mesh_base.h:1345
virtual element_iterator active_elements_begin()=0
virtual element_iterator active_elements_end()=0
virtual node_iterator nodes_end()=0
const Parallel::Communicator & comm() const
unsigned int mesh_dimension() const
Definition: mesh_base.C:148
virtual const Node & node(const dof_id_type i) const
Definition: mesh_base.h:405
void set_union(T &data, const unsigned int root_id) const
void libMesh::DistributedMesh::clear ( )
virtual

Clear all internal data.

Reimplemented from libMesh::MeshBase.

Definition at line 773 of file distributed_mesh.C.

References _elements, _is_serial, _max_elem_id, _max_node_id, _n_elem, _n_nodes, _next_free_local_elem_id, _next_free_local_node_id, _next_free_unpartitioned_elem_id, _next_free_unpartitioned_node_id, _nodes, libMesh::MeshBase::clear(), end, libMesh::ParallelObject::n_processors(), and libMesh::ParallelObject::processor_id().

Referenced by clone(), DistributedMesh(), and libMesh::BoundaryMesh::~BoundaryMesh().

774 {
775  // Call parent clear function
776  MeshBase::clear();
777 
778 
779  // Clear our elements and nodes
780  {
781  elem_iterator_imp it = _elements.begin();
782  const elem_iterator_imp end = _elements.end();
783 
784  // There is no need to remove the elements from
785  // the BoundaryInfo data structure since we
786  // already cleared it.
787  for (; it != end; ++it)
788  delete *it;
789 
790  _elements.clear();
791  }
792 
793  // clear the nodes data structure
794  {
795  node_iterator_imp it = _nodes.begin();
796  node_iterator_imp end = _nodes.end();
797 
798  // There is no need to remove the nodes from
799  // the BoundaryInfo data structure since we
800  // already cleared it.
801  for (; it != end; ++it)
802  delete *it;
803 
804  _nodes.clear();
805  }
806 
807  // We're no longer distributed if we were before
808  _is_serial = true;
809 
810  // Correct our caches
811  _n_nodes = 0;
812  _n_elem = 0;
813  _max_node_id = 0;
814  _max_elem_id = 0;
819 }
mapvector< Elem *, dof_id_type > _elements
dof_id_type _next_free_local_node_id
processor_id_type n_processors() const
IterBase * end
mapvector< Node *, dof_id_type >::veclike_iterator node_iterator_imp
mapvector< Node *, dof_id_type > _nodes
virtual void clear()
Definition: mesh_base.C:283
dof_id_type _next_free_unpartitioned_node_id
dof_id_type _next_free_unpartitioned_elem_id
mapvector< Elem *, dof_id_type >::veclike_iterator elem_iterator_imp
dof_id_type _next_free_local_elem_id
processor_id_type processor_id() const
virtual void libMesh::DistributedMesh::clear_extra_ghost_elems ( )
inlinevirtual

Clears extra ghost elements.

Definition at line 200 of file distributed_mesh.h.

References _extra_ghost_elems.

200 { _extra_ghost_elems.clear(); }
std::set< Elem * > _extra_ghost_elems
virtual UniquePtr<MeshBase> libMesh::DistributedMesh::clone ( ) const
inlinevirtual

Virtual copy-constructor, creates a copy of this mesh

Implements libMesh::MeshBase.

Reimplemented in libMesh::ParallelMesh.

Definition at line 88 of file distributed_mesh.h.

References clear(), DistributedMesh(), redistribute(), update_post_partitioning(), and ~DistributedMesh().

89  { return UniquePtr<MeshBase>(new DistributedMesh(*this)); }
DistributedMesh(const Parallel::Communicator &comm_in, unsigned char dim=1)
const Parallel::Communicator& libMesh::ParallelObject::comm ( ) const
inlineinherited
Returns
a reference to the Parallel::Communicator object used by this mesh.

Definition at line 87 of file parallel_object.h.

References libMesh::ParallelObject::_communicator.

Referenced by libMesh::__libmesh_petsc_diff_solver_monitor(), libMesh::__libmesh_petsc_diff_solver_residual(), libMesh::__libmesh_petsc_snes_jacobian(), libMesh::__libmesh_petsc_snes_postcheck(), libMesh::__libmesh_petsc_snes_residual(), libMesh::__libmesh_tao_equality_constraints(), libMesh::__libmesh_tao_equality_constraints_jacobian(), libMesh::__libmesh_tao_gradient(), libMesh::__libmesh_tao_hessian(), libMesh::__libmesh_tao_inequality_constraints(), libMesh::__libmesh_tao_inequality_constraints_jacobian(), libMesh::__libmesh_tao_objective(), libMesh::MeshRefinement::_coarsen_elements(), libMesh::ExactSolution::_compute_error(), libMesh::ParmetisPartitioner::_do_repartition(), libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::BoundaryInfo::_find_id_maps(), libMesh::PetscLinearSolver< T >::_petsc_shell_matrix_get_diagonal(), libMesh::SlepcEigenSolver< T >::_petsc_shell_matrix_get_diagonal(), libMesh::PetscLinearSolver< T >::_petsc_shell_matrix_mult(), libMesh::SlepcEigenSolver< T >::_petsc_shell_matrix_mult(), libMesh::PetscLinearSolver< T >::_petsc_shell_matrix_mult_add(), libMesh::EquationSystems::_read_impl(), libMesh::MeshRefinement::_refine_elements(), libMesh::MeshRefinement::_smooth_flags(), libMesh::ImplicitSystem::add_matrix(), libMesh::System::add_vector(), libMesh::EigenSparseLinearSolver< T >::adjoint_solve(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Modification::all_tri(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::FEMSystem::assemble_qoi(), libMesh::MeshCommunication::assign_global_indices(), libMesh::ParmetisPartitioner::assign_partitioning(), libMesh::DofMap::attach_matrix(), libMesh::Parallel::BinSorter< KeyType, IdxType >::binsort(), libMesh::Parallel::Sort< KeyType, IdxType >::binsort(), libMesh::MeshTools::bounding_box(), libMesh::MeshCommunication::broadcast(), libMesh::SparseMatrix< T >::build(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::Parallel::Histogram< KeyType, IdxType >::build_histogram(), libMesh::PetscNonlinearSolver< T >::build_mat_null_space(), libMesh::BoundaryInfo::build_node_list_from_side_list(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::MeshBase::cache_elem_dims(), libMesh::System::calculate_norm(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::DistributedVector< T >::clone(), libMesh::EigenSparseVector< T >::clone(), libMesh::LaspackVector< T >::clone(), libMesh::EpetraVector< T >::clone(), libMesh::PetscVector< T >::clone(), libMesh::EpetraVector< T >::close(), libMesh::Parallel::Sort< KeyType, IdxType >::communicate_bins(), libMesh::Nemesis_IO_Helper::compute_num_global_elem_blocks(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::Problem_Interface::computeF(), libMesh::Problem_Interface::computeJacobian(), libMesh::Problem_Interface::computePreconditioner(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::MeshRefinement::create_parent_error_vector(), libMesh::MeshCommunication::delete_remote_elements(), libMesh::DofMap::distribute_dofs(), DMlibMeshFunction(), DMlibMeshJacobian(), DMlibMeshSetSystem_libMesh(), DMVariableBounds_libMesh(), libMesh::MeshRefinement::eliminate_unrefined_patches(), libMesh::EpetraVector< T >::EpetraVector(), libMesh::WeightedPatchRecoveryErrorEstimator::estimate_error(), libMesh::PatchRecoveryErrorEstimator::estimate_error(), libMesh::JumpErrorEstimator::estimate_error(), libMesh::AdjointRefinementEstimator::estimate_error(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_error_fraction(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::MeshCommunication::gather(), libMesh::MeshCommunication::gather_neighboring_elements(), libMesh::CondensedEigenSystem::get_eigenpair(), libMesh::DofMap::get_info(), libMesh::ImplicitSystem::get_linear_solver(), libMesh::EquationSystems::get_solution(), libMesh::LocationMap< T >::init(), libMesh::PetscDiffSolver::init(), libMesh::TimeSolver::init(), libMesh::TopologyMap::init(), libMesh::TaoOptimizationSolver< T >::init(), libMesh::PetscNonlinearSolver< T >::init(), libMesh::DistributedVector< T >::init(), libMesh::EpetraVector< T >::init(), libMesh::PetscVector< T >::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::EigenSystem::init_data(), libMesh::EigenSystem::init_matrices(), libMesh::ParmetisPartitioner::initialize(), libMesh::OptimizationSystem::initialize_equality_constraints_storage(), libMesh::OptimizationSystem::initialize_inequality_constraints_storage(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libmesh_assert_valid_parallel_flags(), libmesh_assert_valid_parallel_object_ids(), libmesh_assert_valid_parallel_p_levels(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::MeshTools::libmesh_assert_valid_unique_ids(), libMesh::MeshRefinement::limit_level_mismatch_at_edge(), libMesh::MeshRefinement::limit_level_mismatch_at_node(), libMesh::MeshRefinement::limit_overrefined_boundary(), libMesh::MeshRefinement::limit_underrefined_boundary(), libMesh::MeshRefinement::make_coarsening_compatible(), libMesh::MeshCommunication::make_elems_parallel_consistent(), libMesh::MeshRefinement::make_flags_parallel_consistent(), libMesh::MeshCommunication::make_new_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_new_nodes_parallel_consistent(), libMesh::MeshCommunication::make_node_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_proc_ids_parallel_consistent(), libMesh::MeshCommunication::make_node_unique_ids_parallel_consistent(), libMesh::MeshCommunication::make_nodes_parallel_consistent(), libMesh::MeshCommunication::make_p_levels_parallel_consistent(), libMesh::MeshRefinement::make_refinement_compatible(), libMesh::DistributedVector< T >::max(), libMesh::FEMSystem::mesh_position_set(), libMesh::MeshSerializer::MeshSerializer(), libMesh::DistributedVector< T >::min(), n_active_elem(), libMesh::MeshTools::n_active_levels(), libMesh::BoundaryInfo::n_boundary_conds(), libMesh::BoundaryInfo::n_edge_conds(), libMesh::CondensedEigenSystem::n_global_non_condensed_dofs(), libMesh::MeshTools::n_levels(), libMesh::BoundaryInfo::n_nodeset_conds(), libMesh::MeshTools::n_p_levels(), libMesh::BoundaryInfo::n_shellface_conds(), parallel_max_elem_id(), parallel_max_node_id(), libMesh::ReplicatedMesh::parallel_max_unique_id(), parallel_max_unique_id(), parallel_n_elem(), parallel_n_nodes(), libMesh::SparsityPattern::Build::parallel_sync(), libMesh::MeshTools::paranoid_n_levels(), libMesh::Partitioner::partition(), libMesh::MetisPartitioner::partition_range(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::petsc_auto_fieldsplit(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::MeshBase::prepare_for_use(), libMesh::SparseMatrix< T >::print(), libMesh::MeshTools::processor_bounding_box(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::XdrIO::read_serialized_bc_names(), libMesh::XdrIO::read_serialized_bcs_helper(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::XdrIO::read_serialized_nodes(), libMesh::XdrIO::read_serialized_nodesets(), libMesh::XdrIO::read_serialized_subdomain_names(), libMesh::MeshBase::recalculate_n_partitions(), libMesh::MeshCommunication::redistribute(), renumber_dof_objects(), libMesh::MeshCommunication::send_coarse_ghosts(), libMesh::Partitioner::set_node_processor_ids(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::Partitioner::set_parent_processor_ids(), libMesh::LaplaceMeshSmoother::smooth(), libMesh::Parallel::Sort< KeyType, IdxType >::sort(), libMesh::MeshTools::subdomain_bounding_box(), libMesh::MeshBase::subdomain_ids(), libMesh::BoundaryInfo::sync(), libMesh::Parallel::sync_element_data_by_parent_id(), libMesh::Parallel::sync_node_data_by_element_id(), libMesh::MeshRefinement::test_level_one(), libMesh::MeshRefinement::test_unflagged(), libMesh::MeshTools::total_weight(), libMesh::NameBasedIO::write(), libMesh::XdrIO::write(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), libMesh::XdrIO::write_serialized_nodesets(), libMesh::DistributedVector< T >::zero_clone(), libMesh::LaspackVector< T >::zero_clone(), libMesh::EigenSparseVector< T >::zero_clone(), libMesh::EpetraVector< T >::zero_clone(), and libMesh::PetscVector< T >::zero_clone().

88  { return _communicator; }
const Parallel::Communicator & _communicator
bool libMesh::UnstructuredMesh::contract ( )
virtualinherited

Delete subactive (i.e. children of coarsened) elements. This removes all elements descended from currently active elements in the mesh.

Implements libMesh::MeshBase.

Definition at line 747 of file unstructured_mesh.C.

References libMesh::Elem::active(), libMesh::Elem::ancestor(), libMesh::MeshBase::clear_point_locator(), libMesh::Elem::contract(), libMesh::MeshBase::delete_elem(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), end, libMesh::MeshBase::ghosting_functors_begin(), libMesh::MeshBase::ghosting_functors_end(), libMesh::libmesh_assert(), libmesh_nullptr, libMesh::GhostingFunctor::mesh_reinit(), libMesh::Elem::parent(), libMesh::MeshBase::renumber_nodes_and_elements(), and libMesh::Elem::subactive().

748 {
749  LOG_SCOPE ("contract()", "Mesh");
750 
751  // Flag indicating if this call actually changes the mesh
752  bool mesh_changed = false;
753 
754  element_iterator in = elements_begin();
755  const element_iterator end = elements_end();
756 
757 #ifdef DEBUG
758  for ( ; in != end; ++in)
759  if (*in != libmesh_nullptr)
760  {
761  Elem * el = *in;
762  libmesh_assert(el->active() || el->subactive() || el->ancestor());
763  }
764  in = elements_begin();
765 #endif
766 
767  // Loop over the elements.
768  for ( ; in != end; ++in)
769  if (*in != libmesh_nullptr)
770  {
771  Elem * el = *in;
772 
773  // Delete all the subactive ones
774  if (el->subactive())
775  {
776  // No level-0 element should be subactive.
777  // Note that we CAN'T test elem->level(), as that
778  // touches elem->parent()->dim(), and elem->parent()
779  // might have already been deleted!
780  libmesh_assert(el->parent());
781 
782  // Delete the element
783  // This just sets a pointer to NULL, and doesn't
784  // invalidate any iterators
785  this->delete_elem(el);
786 
787  // the mesh has certainly changed
788  mesh_changed = true;
789  }
790  else
791  {
792  // Compress all the active ones
793  if (el->active())
794  el->contract();
795  else
796  libmesh_assert (el->ancestor());
797  }
798  }
799 
800  // Strip any newly-created NULL voids out of the element array
802 
803  // FIXME: Need to understand why deleting subactive children
804  // invalidates the point locator. For now we will clear it explicitly
805  this->clear_point_locator();
806 
807  // Allow our GhostingFunctor objects to reinit if necessary.
808  std::set<GhostingFunctor *>::iterator gf_it = this->ghosting_functors_begin();
809  const std::set<GhostingFunctor *>::iterator gf_end = this->ghosting_functors_end();
810  for (; gf_it != gf_end; ++gf_it)
811  {
812  GhostingFunctor *gf = *gf_it;
813  libmesh_assert(gf);
814  gf->mesh_reinit();
815  }
816 
817  return mesh_changed;
818 }
const class libmesh_nullptr_t libmesh_nullptr
IterBase * end
libmesh_assert(j)
std::set< GhostingFunctor * >::const_iterator ghosting_functors_end() const
Definition: mesh_base.h:761
virtual element_iterator elements_begin()=0
virtual void delete_elem(Elem *e)=0
virtual element_iterator elements_end()=0
void clear_point_locator()
Definition: mesh_base.C:552
std::set< GhostingFunctor * >::const_iterator ghosting_functors_begin() const
Definition: mesh_base.h:755
virtual void renumber_nodes_and_elements()=0
void libMesh::UnstructuredMesh::copy_nodes_and_elements ( const UnstructuredMesh other_mesh,
const bool  skip_find_neighbors = false 
)
virtualinherited

Deep copy of another unstructured mesh class (used by subclass copy constructors)

Definition at line 71 of file unstructured_mesh.C.

References libMesh::MeshBase::_is_prepared, libMesh::MeshBase::_n_parts, libMesh::Elem::add_child(), libMesh::MeshBase::add_elem(), libMesh::MeshBase::add_point(), libMesh::MeshBase::allow_renumbering(), libMesh::Elem::build(), libMesh::Elem::child_ptr(), libMesh::MeshBase::elem_ptr(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), end, libMesh::Elem::has_children(), libMesh::DofObject::id(), libMesh::MeshTools::libmesh_assert_valid_amr_elem_ids(), libmesh_nullptr, libMesh::Elem::n_children(), libMesh::MeshBase::n_elem(), libMesh::Elem::n_neighbors(), libMesh::MeshBase::n_nodes(), libMesh::Elem::n_sides(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::node_id(), libMesh::MeshBase::node_ptr(), libMesh::MeshBase::nodes_begin(), libMesh::MeshBase::nodes_end(), libMesh::Elem::p_level(), libMesh::Elem::p_refinement_flag(), libMesh::Elem::parent(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::Elem::refinement_flag(), libMesh::remote_elem, libMesh::MeshBase::reserve_elem(), libMesh::MeshBase::reserve_nodes(), libMesh::Elem::set_neighbor(), libMesh::DofObject::set_unique_id(), libMesh::MeshBase::skip_partitioning(), libMesh::Elem::subdomain_id(), libMesh::Elem::type(), libMesh::DofObject::unique_id(), and libMesh::Elem::which_child_am_i().

Referenced by DistributedMesh(), libMesh::ReplicatedMesh::ReplicatedMesh(), and libMesh::ReplicatedMesh::stitching_helper().

73 {
74  // We're assuming our subclass data needs no copy
75  libmesh_assert_equal_to (_n_parts, other_mesh._n_parts);
76  libmesh_assert_equal_to (_is_prepared, other_mesh._is_prepared);
77 
78  // We're assuming the other mesh has proper element number ordering,
79  // so that we add parents before their children.
80 #ifdef DEBUG
82 #endif
83 
84  //Copy in Nodes
85  {
86  //Preallocate Memory if necessary
87  this->reserve_nodes(other_mesh.n_nodes());
88 
89  const_node_iterator it = other_mesh.nodes_begin();
90  const_node_iterator end = other_mesh.nodes_end();
91 
92  for (; it != end; ++it)
93  {
94  const Node * oldn = *it;
95 
96  // Add new nodes in old node Point locations
97 #ifdef LIBMESH_ENABLE_UNIQUE_ID
98  Node *newn =
99 #endif
100  this->add_point(*oldn, oldn->id(), oldn->processor_id());
101 
102 #ifdef LIBMESH_ENABLE_UNIQUE_ID
103  newn->set_unique_id() = oldn->unique_id();
104 #endif
105  }
106  }
107 
108  //Copy in Elements
109  {
110  //Preallocate Memory if necessary
111  this->reserve_elem(other_mesh.n_elem());
112 
113  // Declare a map linking old and new elements, needed to copy the neighbor lists
114  std::map<const Elem *, Elem *> old_elems_to_new_elems;
115 
116  // Loop over the elements
117  MeshBase::const_element_iterator it = other_mesh.elements_begin();
118  const MeshBase::const_element_iterator end = other_mesh.elements_end();
119 
120  // FIXME: Where do we set element IDs??
121  for (; it != end; ++it)
122  {
123  //Look at the old element
124  const Elem * old = *it;
125  //Build a new element
126  Elem * newparent = old->parent() ?
127  this->elem_ptr(old->parent()->id()) : libmesh_nullptr;
128  UniquePtr<Elem> ap = Elem::build(old->type(), newparent);
129  Elem * el = ap.release();
130 
131  el->subdomain_id() = old->subdomain_id();
132 
133  for (unsigned int s=0; s != old->n_sides(); ++s)
134  if (old->neighbor_ptr(s) == remote_elem)
135  el->set_neighbor(s, const_cast<RemoteElem *>(remote_elem));
136 
137 #ifdef LIBMESH_ENABLE_AMR
138  if (old->has_children())
139  for (unsigned int c=0; c != old->n_children(); ++c)
140  if (old->child_ptr(c) == remote_elem)
141  el->add_child(const_cast<RemoteElem *>(remote_elem), c);
142 
143  //Create the parent's child pointers if necessary
144  if (newparent)
145  {
146  unsigned int oldc = old->parent()->which_child_am_i(old);
147  newparent->add_child(el, oldc);
148  }
149 
150  // Copy the refinement flags
151  el->set_refinement_flag(old->refinement_flag());
152 
153  // Use hack_p_level since we may not have sibling elements
154  // added yet
155  el->hack_p_level(old->p_level());
156 
157  el->set_p_refinement_flag(old->p_refinement_flag());
158 #endif // #ifdef LIBMESH_ENABLE_AMR
159 
160  //Assign all the nodes
161  for(unsigned int i=0;i<el->n_nodes();i++)
162  el->set_node(i) = this->node_ptr(old->node_id(i));
163 
164  // And start it off in the same subdomain
165  el->processor_id() = old->processor_id();
166 
167  // Give it the same ids
168  el->set_id(old->id());
169 
170 #ifdef LIBMESH_ENABLE_UNIQUE_ID
171  el->set_unique_id() = old->unique_id();
172 #endif
173 
174  //Hold onto it
175  if(!skip_find_neighbors)
176  {
177  this->add_elem(el);
178  }
179  else
180  {
181  Elem * new_el = this->add_elem(el);
182  old_elems_to_new_elems[old] = new_el;
183  }
184 
185  // Add the link between the original element and this copy to the map
186  if(skip_find_neighbors)
187  old_elems_to_new_elems[old] = el;
188  }
189 
190  // Loop (again) over the elements to fill in the neighbors
191  if(skip_find_neighbors)
192  {
193  it = other_mesh.elements_begin();
194  for (; it != end; ++it)
195  {
196  Elem * old_elem = *it;
197  Elem * new_elem = old_elems_to_new_elems[old_elem];
198  for (unsigned int s=0; s != old_elem->n_neighbors(); ++s)
199  {
200  const Elem * old_neighbor = old_elem->neighbor_ptr(s);
201  Elem * new_neighbor = old_elems_to_new_elems[old_neighbor];
202  new_elem->set_neighbor(s, new_neighbor);
203  }
204  }
205  }
206  }
207 
208  //Finally prepare the new Mesh for use. Keep the same numbering and
209  //partitioning but also the same renumbering and partitioning
210  //policies as our source mesh.
211  this->allow_renumbering(false);
212  this->skip_partitioning(true);
213  this->prepare_for_use(false, skip_find_neighbors);
214  this->allow_renumbering(other_mesh.allow_renumbering());
215  this->skip_partitioning(other_mesh.skip_partitioning());
216 }
unique_id_type & set_unique_id()
Definition: dof_object.h:654
virtual void reserve_nodes(const dof_id_type nn)=0
static UniquePtr< Elem > build(const ElemType type, Elem *p=libmesh_nullptr)
Definition: elem.C:234
bool skip_partitioning() const
Definition: mesh_base.h:732
const class libmesh_nullptr_t libmesh_nullptr
virtual const Node * node_ptr(const dof_id_type i) const =0
IterBase * end
virtual Node * add_point(const Point &p, const dof_id_type id=DofObject::invalid_id, const processor_id_type proc_id=DofObject::invalid_processor_id)=0
unsigned int _n_parts
Definition: mesh_base.h:1276
virtual Elem * add_elem(Elem *e)=0
void libmesh_assert_valid_amr_elem_ids(const MeshBase &mesh)
Definition: mesh_tools.C:1119
void prepare_for_use(const bool skip_renumber_nodes_and_elements=false, const bool skip_find_neighbors=false)
Definition: mesh_base.C:174
bool allow_renumbering() const
Definition: mesh_base.h:708
virtual const Elem * elem_ptr(const dof_id_type i) const =0
virtual void reserve_elem(const dof_id_type ne)=0
processor_id_type processor_id() const
Definition: dof_object.h:686
const RemoteElem * remote_elem
Definition: remote_elem.C:57
void libMesh::UnstructuredMesh::create_pid_mesh ( UnstructuredMesh pid_mesh,
const processor_id_type  pid 
) const
inherited

Generates a new mesh containing all the elements which are assigned to processor pid. This mesh is written to the pid_mesh reference which you must create and pass to the function.

Definition at line 626 of file unstructured_mesh.C.

References libMesh::MeshBase::active_pid_elements_begin(), libMesh::MeshBase::active_pid_elements_end(), libMesh::UnstructuredMesh::create_submesh(), libMesh::ParallelObject::n_processors(), and libMesh::out.

628 {
629 
630  // Issue a warning if the number the number of processors
631  // currently available is less that that requested for
632  // partitioning. This is not necessarily an error since
633  // you may run on one processor and still partition the
634  // mesh into several partitions.
635 #ifdef DEBUG
636  if (this->n_processors() < pid)
637  {
638  libMesh::out << "WARNING: You are creating a "
639  << "mesh for a processor id (="
640  << pid
641  << ") greater than "
642  << "the number of processors available for "
643  << "the calculation. (="
644  << this->n_processors()
645  << ")."
646  << std::endl;
647  }
648 #endif
649 
650  // Create iterators to loop over the list of elements
651  // const_active_pid_elem_iterator it(this->elements_begin(), pid);
652  // const const_active_pid_elem_iterator it_end(this->elements_end(), pid);
653 
654  const_element_iterator it = this->active_pid_elements_begin(pid);
655  const const_element_iterator it_end = this->active_pid_elements_end(pid);
656 
657  this->create_submesh (pid_mesh, it, it_end);
658 }
processor_id_type n_processors() const
void create_submesh(UnstructuredMesh &new_mesh, const_element_iterator &it, const const_element_iterator &it_end) const
virtual element_iterator active_pid_elements_begin(processor_id_type proc_id)=0
virtual element_iterator active_pid_elements_end(processor_id_type proc_id)=0
OStreamProxy out(std::cout)
void libMesh::UnstructuredMesh::create_submesh ( UnstructuredMesh new_mesh,
const_element_iterator it,
const const_element_iterator it_end 
) const
inherited

Constructs a mesh called "new_mesh" from the current mesh by iterating over the elements between it and it_end and adding them to the new mesh.

Definition at line 666 of file unstructured_mesh.C.

References libMesh::MeshBase::add_elem(), libMesh::MeshBase::add_point(), libMesh::BoundaryInfo::add_side(), libMesh::BoundaryInfo::boundary_ids(), libMesh::Elem::build(), libMesh::MeshBase::clear(), libMesh::MeshBase::delete_remote_elements(), libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::MeshBase::is_serial(), libMesh::libmesh_assert(), libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_nodes(), libMesh::Elem::n_nodes(), libMesh::Elem::n_sides(), libMesh::Elem::node_id(), libMesh::Elem::node_ptr(), libMesh::MeshBase::node_ptr(), libMesh::Elem::point(), libMesh::MeshBase::prepare_for_use(), libMesh::DofObject::processor_id(), libMesh::MeshBase::query_node_ptr(), libMesh::DofObject::set_id(), libMesh::Elem::set_node(), libMesh::DofObject::set_unique_id(), libMesh::Elem::subdomain_id(), libMesh::Elem::type(), and libMesh::DofObject::unique_id().

Referenced by libMesh::UnstructuredMesh::create_pid_mesh().

669 {
670  // Just in case the subdomain_mesh already has some information
671  // in it, get rid of it.
672  new_mesh.clear();
673 
674  // If we're not serial, our submesh isn't either.
675  // There are no remote elements to delete on an empty mesh, but
676  // calling the method to do so marks the mesh as parallel.
677  if (!this->is_serial())
678  new_mesh.delete_remote_elements();
679 
680  // Fail if (*this == new_mesh), we cannot create a submesh inside ourself!
681  // This may happen if the user accidently passes the original mesh into
682  // this function! We will check this by making sure we did not just
683  // clear ourself.
684  libmesh_assert_not_equal_to (this->n_nodes(), 0);
685  libmesh_assert_not_equal_to (this->n_elem(), 0);
686 
687  // Container to catch boundary IDs handed back by BoundaryInfo
688  std::vector<boundary_id_type> bc_ids;
689 
690  for (; it != it_end; ++it)
691  {
692  const Elem * old_elem = *it;
693 
694  // Add an equivalent element type to the new_mesh.
695  // Copy ids for this element.
696  Elem * new_elem = Elem::build(old_elem->type()).release();
697  new_elem->set_id() = old_elem->id();
698 #ifdef LIBMESH_ENABLE_UNIQUE_ID
699  new_elem->set_unique_id() = old_elem->unique_id();
700 #endif
701  new_elem->subdomain_id() = old_elem->subdomain_id();
702  new_elem->processor_id() = old_elem->processor_id();
703 
704  new_mesh.add_elem (new_elem);
705 
706  libmesh_assert(new_elem);
707 
708  // Loop over the nodes on this element.
709  for (unsigned int n=0; n<old_elem->n_nodes(); n++)
710  {
711  const dof_id_type this_node_id = old_elem->node_id(n);
712 
713  // Add this node to the new mesh if it's not there already
714  if (!new_mesh.query_node_ptr(this_node_id))
715  {
716 #ifdef LIBMESH_ENABLE_UNIQUE_ID
717  Node *newn =
718 #endif
719  new_mesh.add_point (old_elem->point(n),
720  this_node_id,
721  old_elem->node_ptr(n)->processor_id());
722 
723 #ifdef LIBMESH_ENABLE_UNIQUE_ID
724  newn->set_unique_id() = old_elem->node_ptr(n)->unique_id();
725 #endif
726  }
727 
728  // Define this element's connectivity on the new mesh
729  new_elem->set_node(n) = new_mesh.node_ptr(this_node_id);
730  }
731 
732  // Maybe add boundary conditions for this element
733  for (unsigned short s=0; s<old_elem->n_sides(); s++)
734  {
735  this->get_boundary_info().boundary_ids(old_elem, s, bc_ids);
736  new_mesh.get_boundary_info().add_side (new_elem, s, bc_ids);
737  }
738  } // end loop over elements
739 
740  // Prepare the new_mesh for use
741  new_mesh.prepare_for_use(/*skip_renumber =*/false);
742 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
virtual bool is_serial() const
Definition: mesh_base.h:134
static UniquePtr< Elem > build(const ElemType type, Elem *p=libmesh_nullptr)
Definition: elem.C:234
libmesh_assert(j)
std::vector< boundary_id_type > boundary_ids(const Node *node) const
virtual dof_id_type n_nodes() const =0
virtual dof_id_type n_elem() const =0
uint8_t dof_id_type
Definition: id_types.h:64
void libMesh::DistributedMesh::delete_elem ( Elem e)
virtual

Removes element e from the mesh. Note that calling this method may produce isolated nodes, i.e. nodes not connected to any element. This method must be implemented in derived classes in such a way that it does not invalidate element iterators.

Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Implements libMesh::MeshBase.

Definition at line 538 of file distributed_mesh.C.

References _elements, _n_elem, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), libmesh_nullptr, libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::BoundaryInfo::remove().

Referenced by libMesh::MeshCommunication::delete_remote_elements(), insert_elem(), and reserve_elem().

539 {
540  libmesh_assert (e);
541 
542  // Try to make the cached elem data more accurate
543  processor_id_type elem_procid = e->processor_id();
544  if (elem_procid == this->processor_id() ||
545  elem_procid == DofObject::invalid_processor_id)
546  _n_elem--;
547 
548  // Delete the element from the BoundaryInfo object
549  this->get_boundary_info().remove(e);
550 
551  // But not yet from the container; we might invalidate
552  // an iterator that way!
553 
554  //_elements.erase(e->id());
555 
556  // Instead, we set it to NULL for now
557 
558  _elements[e->id()] = libmesh_nullptr;
559 
560  // delete the element
561  delete e;
562 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
mapvector< Elem *, dof_id_type > _elements
void remove(const Node *node)
uint8_t processor_id_type
Definition: id_types.h:99
const class libmesh_nullptr_t libmesh_nullptr
libmesh_assert(j)
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
processor_id_type processor_id() const
void libMesh::DistributedMesh::delete_node ( Node n)
virtual

Removes the Node n from the mesh.

Implements libMesh::MeshBase.

Definition at line 709 of file distributed_mesh.C.

References _n_nodes, _nodes, libMesh::MeshBase::get_boundary_info(), libMesh::DofObject::id(), libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), libmesh_nullptr, libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), and libMesh::BoundaryInfo::remove().

Referenced by libMesh::MeshCommunication::delete_remote_elements(), and reserve_elem().

710 {
711  libmesh_assert(n);
712  libmesh_assert(_nodes[n->id()]);
713 
714  // Try to make the cached elem data more accurate
715  processor_id_type node_procid = n->processor_id();
716  if (node_procid == this->processor_id() ||
717  node_procid == DofObject::invalid_processor_id)
718  _n_nodes--;
719 
720  // Delete the node from the BoundaryInfo object
721  this->get_boundary_info().remove(n);
722 
723  // But not yet from the container; we might invalidate
724  // an iterator that way!
725 
726  //_nodes.erase(n->id());
727 
728  // Instead, we set it to NULL for now
729 
730  _nodes[n->id()] = libmesh_nullptr;
731 
732  // delete the node
733  delete n;
734 }
const BoundaryInfo & get_boundary_info() const
Definition: mesh_base.h:111
void remove(const Node *node)
uint8_t processor_id_type
Definition: id_types.h:99
const class libmesh_nullptr_t libmesh_nullptr
libmesh_assert(j)
mapvector< Node *, dof_id_type > _nodes
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
processor_id_type processor_id() const
void libMesh::DistributedMesh::delete_remote_elements ( )
virtual

Deletes all nonlocal elements of the mesh except for "ghosts" which touch a local element, and deletes all nodes which are not part of a local or ghost element

Reimplemented from libMesh::MeshBase.

Definition at line 1352 of file distributed_mesh.C.

References _elements, _extra_ghost_elems, _is_serial, _is_serial_on_proc_0, _nodes, libMesh::MeshCommunication::delete_remote_elements(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libmesh_assert_valid_parallel_flags(), libmesh_assert_valid_parallel_ids(), libMesh::MeshTools::libmesh_assert_valid_refinement_tree(), max_elem_id(), max_node_id(), n_elem(), n_nodes(), parallel_max_elem_id(), parallel_max_node_id(), parallel_n_elem(), parallel_n_nodes(), and update_parallel_id_counts().

Referenced by is_replicated().

1353 {
1354 #ifdef DEBUG
1355  // Make sure our neighbor links are all fine
1357 
1358  // And our child/parent links, and our flags
1360 
1361  // Make sure our ids and flags are consistent
1364 
1365  libmesh_assert_equal_to (this->n_nodes(), this->parallel_n_nodes());
1366  libmesh_assert_equal_to (this->n_elem(), this->parallel_n_elem());
1367  const dof_id_type pmax_node_id = this->parallel_max_node_id();
1368  const dof_id_type pmax_elem_id = this->parallel_max_elem_id();
1369  libmesh_assert_equal_to (this->max_node_id(), pmax_node_id);
1370  libmesh_assert_equal_to (this->max_elem_id(), pmax_elem_id);
1371 #endif
1372 
1373  _is_serial = false;
1374  _is_serial_on_proc_0 = false;
1375 
1376  MeshCommunication().delete_remote_elements(*this, _extra_ghost_elems);
1377 
1378  libmesh_assert_equal_to (this->max_elem_id(), this->parallel_max_elem_id());
1379 
1380  // Now make sure the containers actually shrink - strip
1381  // any newly-created NULL voids out of the element array
1382  mapvector<Elem *,dof_id_type>::veclike_iterator e_it = _elements.begin();
1383  const mapvector<Elem *,dof_id_type>::veclike_iterator e_end = _elements.end();
1384  for (; e_it != e_end;)
1385  if (!*e_it)
1386  _elements.erase(e_it++);
1387  else
1388  ++e_it;
1389 
1390  mapvector<Node *,dof_id_type>::veclike_iterator n_it = _nodes.begin();
1391  const mapvector<Node *,dof_id_type>::veclike_iterator n_end = _nodes.end();
1392  for (; n_it != n_end;)
1393  if (!*n_it)
1394  _nodes.erase(n_it++);
1395  else
1396  ++n_it;
1397 
1398  // We may have deleted no-longer-connected nodes or coarsened-away
1399  // elements; let's update our caches.
1400  this->update_parallel_id_counts();
1401 
1402 #ifdef DEBUG
1403  // We might not have well-packed objects if the user didn't allow us
1404  // to renumber
1405  // libmesh_assert_equal_to (this->n_nodes(), this->max_node_id());
1406  // libmesh_assert_equal_to (this->n_elem(), this->max_elem_id());
1407 
1408  // Make sure our neighbor links are all fine
1410 
1411  // And our child/parent links, and our flags
1413 
1414  // Make sure our ids and flags are consistent
1417 #endif
1418 }
mapvector< Elem *, dof_id_type > _elements
virtual dof_id_type n_elem() const libmesh_override
void libmesh_assert_valid_refinement_tree(const MeshBase &mesh)
Definition: mesh_tools.C:1646
dof_id_type parallel_max_elem_id() const
void libmesh_assert_valid_parallel_flags() const
virtual void update_parallel_id_counts() libmesh_override
dof_id_type parallel_max_node_id() const
mapvector< Node *, dof_id_type > _nodes
std::set< Elem * > _extra_ghost_elems
virtual dof_id_type n_nodes() const libmesh_override
virtual dof_id_type max_node_id() const libmesh_override
virtual dof_id_type parallel_n_nodes() const libmesh_override
void libmesh_assert_valid_neighbors(const MeshBase &mesh, bool assert_valid_remote_elems=true)
Definition: mesh_tools.C:1686
virtual dof_id_type parallel_n_elem() const libmesh_override
virtual dof_id_type max_elem_id() const libmesh_override
uint8_t dof_id_type
Definition: id_types.h:64
virtual void libmesh_assert_valid_parallel_ids() const libmesh_override
void libMesh::MeshBase::detect_interior_parents ( )
inherited

Search the mesh for elements that have a neighboring element of dim+1 and set that element as the interior parent

Definition at line 675 of file mesh_base.C.

References libMesh::MeshBase::active_elements_begin(), libMesh::MeshBase::active_elements_end(), libMesh::Elem::dim(), libMesh::MeshBase::elem(), libMesh::MeshBase::elem_dimensions(), libMesh::MeshBase::elem_ptr(), libMesh::MeshBase::elem_ref(), libMesh::MeshBase::elements_begin(), end, libMesh::DofObject::id(), libMesh::Elem::interior_parent(), libMesh::MeshBase::max_elem_id(), libMesh::Elem::n_vertices(), libMesh::Elem::node_id(), and libMesh::Elem::set_interior_parent().

Referenced by libMesh::MeshBase::get_subdomain_name_map(), and libMesh::MeshBase::prepare_for_use().

676 {
677  // This requires an inspection on every processor
678  parallel_object_only();
679 
680  // Check if the mesh contains mixed dimensions. If so, then set interior parents, otherwise return.
681  if (this->elem_dimensions().size() == 1)
682  return;
683 
684  //This map will be used to set interior parents
685  LIBMESH_BEST_UNORDERED_MAP<dof_id_type, std::vector<dof_id_type> > node_to_elem;
686 
687  const_element_iterator el = this->active_elements_begin();
688  const_element_iterator end = this->active_elements_end();
689 
690  for (; el!=end; ++el)
691  {
692  const Elem * elem = *el;
693 
694  // Populating the node_to_elem map, same as MeshTools::build_nodes_to_elem_map
695  for (unsigned int n=0; n<elem->n_vertices(); n++)
696  {
697  libmesh_assert_less (elem->id(), this->max_elem_id());
698 
699  node_to_elem[elem->node_id(n)].push_back(elem->id());
700  }
701  }
702 
703  // Automatically set interior parents
704  el = this->elements_begin();
705  for (; el!=end; ++el)
706  {
707  Elem * element = *el;
708 
709  // Ignore an 3D element or an element that already has an interior parent
710  if (element->dim()>=LIBMESH_DIM || element->interior_parent())
711  continue;
712 
713  // Start by generating a SET of elements that are dim+1 to the current
714  // element at each vertex of the current element, thus ignoring interior nodes.
715  // If one of the SET of elements is empty, then we will not have an interior parent
716  // since an interior parent must be connected to all vertices of the current element
717  std::vector< std::set<dof_id_type> > neighbors( element->n_vertices() );
718 
719  bool found_interior_parents = false;
720 
721  for (dof_id_type n=0; n < element->n_vertices(); n++)
722  {
723  std::vector<dof_id_type> & element_ids = node_to_elem[element->node_id(n)];
724  for (std::vector<dof_id_type>::iterator e_it = element_ids.begin();
725  e_it != element_ids.end(); e_it++)
726  {
727  dof_id_type eid = *e_it;
728  if (this->elem_ref(eid).dim() == element->dim()+1)
729  neighbors[n].insert(eid);
730  }
731  if (neighbors[n].size()>0)
732  {
733  found_interior_parents = true;
734  }
735  else
736  {
737  // We have found an empty set, no reason to continue
738  // Ensure we set this flag to false before the break since it could have
739  // been set to true for previous vertex
740  found_interior_parents = false;
741  break;
742  }
743  }
744 
745  // If we have successfully generated a set of elements for each vertex, we will compare
746  // the set for vertex 0 will the sets for the vertices until we find a id that exists in
747  // all sets. If found, this is our an interior parent id. The interior parent id found
748  // will be the lowest element id if there is potential for multiple interior parents.
749  if (found_interior_parents)
750  {
751  std::set<dof_id_type> & neighbors_0 = neighbors[0];
752  for (std::set<dof_id_type>::iterator e_it = neighbors_0.begin();
753  e_it != neighbors_0.end(); e_it++)
754  {
755  found_interior_parents=false;
756  dof_id_type interior_parent_id = *e_it;
757  for (dof_id_type n=1; n < element->n_vertices(); n++)
758  {
759  if (neighbors[n].find(interior_parent_id)!=neighbors[n].end())
760  {
761  found_interior_parents=true;
762  }
763  else
764  {
765  found_interior_parents=false;
766  break;
767  }
768  }
769  if (found_interior_parents)
770  {
771  element->set_interior_parent(this->elem_ptr(interior_parent_id));
772  break;
773  }
774  }
775  }
776  }
777 }
virtual const Elem * elem(const dof_id_type i) const
Definition: mesh_base.h:486
IterBase * end
virtual element_iterator elements_begin()=0
virtual dof_id_type max_elem_id() const =0
const std::set< unsigned char > & elem_dimensions() const
Definition: mesh_base.h:184
virtual element_iterator active_elements_begin()=0
virtual element_iterator active_elements_end()=0
virtual const Elem & elem_ref(const dof_id_type i) const
Definition: mesh_base.h:453
virtual unsigned int dim() const =0
virtual const Elem * elem_ptr(const dof_id_type i) const =0
uint8_t dof_id_type
Definition: id_types.h:64
virtual const Elem* libMesh::MeshBase::elem ( const dof_id_type  i) const
inlinevirtualinherited

Return a pointer to the $ i^{th} $ element, which should be present in this processor's subset of the mesh data structure.

This method is deprecated; use the less confusingly-named elem_ptr() instead.

Definition at line 486 of file mesh_base.h.

References libMesh::MeshBase::elem_ptr().

Referenced by libMesh::MeshBase::detect_interior_parents(), and libMesh::MeshTools::Modification::smooth().

487  {
488  libmesh_deprecated();
489  return this->elem_ptr(i);
490  }
virtual const Elem * elem_ptr(const dof_id_type i) const =0
virtual Elem* libMesh::MeshBase::elem ( const dof_id_type  i)
inlinevirtualinherited

Return a writeable pointer to the $ i^{th} $ element, which should be present in this processor's subset of the mesh data structure.

This method is deprecated; use the less confusingly-named elem_ptr() instead.

Definition at line 500 of file mesh_base.h.

References libMesh::MeshBase::elem_ptr(), and libMesh::MeshBase::query_elem_ptr().

501  {
502  libmesh_deprecated();
503  return this->elem_ptr(i);
504  }
virtual const Elem * elem_ptr(const dof_id_type i) const =0
const std::set<unsigned char>& libMesh::MeshBase::elem_dimensions ( ) const
inlineinherited
const Elem * libMesh::DistributedMesh::elem_ptr ( const dof_id_type  i) const
virtual

Return a pointer to the $ i^{th} $ element, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 354 of file distributed_mesh.C.

References _elements, and libMesh::libmesh_assert().

Referenced by reserve_elem().

355 {
357  libmesh_assert_equal_to (_elements[i]->id(), i);
358 
359  return _elements[i];
360 }
mapvector< Elem *, dof_id_type > _elements
libmesh_assert(j)
Elem * libMesh::DistributedMesh::elem_ptr ( const dof_id_type  i)
virtual

Return a writeable pointer to the $ i^{th} $ element, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 365 of file distributed_mesh.C.

References _elements, and libMesh::libmesh_assert().

366 {
368  libmesh_assert_equal_to (_elements[i]->id(), i);
369 
370  return _elements[i];
371 }
mapvector< Elem *, dof_id_type > _elements
libmesh_assert(j)
virtual Elem& libMesh::MeshBase::elem_ref ( const dof_id_type  i)
inlinevirtualinherited

Return a writeable reference to the $ i^{th} $ element, which should be present in this processor's subset of the mesh data structure.

Definition at line 462 of file mesh_base.h.

References libMesh::MeshBase::elem_ptr().

462  {
463  return *this->elem_ptr(i);
464  }
virtual const Elem * elem_ptr(const dof_id_type i) const =0
virtual element_iterator libMesh::DistributedMesh::elements_begin ( )
virtual
virtual const_element_iterator libMesh::DistributedMesh::elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::elements_end ( )
virtual
virtual const_element_iterator libMesh::DistributedMesh::elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::evaluable_elements_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
virtual

Iterate over elements in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::evaluable_elements_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::evaluable_elements_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::evaluable_elements_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::evaluable_nodes_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
virtual

Iterate over nodes in the Mesh where the solution (as distributed by the given DofMap) can be evaluated, for the given variable var_num, or for all variables by default.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::evaluable_nodes_begin ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::evaluable_nodes_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::evaluable_nodes_end ( const DofMap dof_map,
unsigned int  var_num = libMesh::invalid_uint 
) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::facelocal_elements_begin ( )
virtual

Iterate over elements which are on or have a neighbor on the current processor.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::facelocal_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::facelocal_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::facelocal_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

void libMesh::UnstructuredMesh::find_neighbors ( const bool  reset_remote_elements = false,
const bool  reset_current_list = true 
)
virtualinherited

Other functions from MeshBase requiring re-definition.

Here we look at all of the child elements which don't already have valid neighbors.

If a child element has a NULL neighbor it is either because it is on the boundary or because its neighbor is at a different level. In the latter case we must get the neighbor from the parent.

If a child element has a remote_elem neighbor on a boundary it shares with its parent, that info may have become out-dated through coarsening of the neighbor's parent. In this case, if the parent's neighbor is active then the child should share it.

Furthermore, that neighbor better be active, otherwise we missed a child somewhere.

We also need to look through children ordered by increasing refinement level in order to add new interior_parent() links in boundary elements which have just been generated by refinement, and fix links in boundary elements whose previous interior_parent() has just been coarsened away.

Implements libMesh::MeshBase.

Definition at line 231 of file unstructured_mesh.C.

References libMesh::TypeVector< T >::absolute_fuzzy_equals(), libMesh::Elem::active(), libMesh::Elem::ancestor(), libMesh::Elem::centroid(), libMesh::Elem::child_ptr(), libMesh::Elem::dim(), libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), end, libMesh::err, libMesh::Elem::has_children(), libMesh::Elem::hmin(), libMesh::DofObject::id(), libMesh::Elem::interior_parent(), libMesh::Elem::is_child_on_side(), libMesh::Elem::key(), libMesh::Elem::level(), libMesh::MeshBase::level_elements_begin(), libMesh::MeshBase::level_elements_end(), libMesh::libmesh_assert(), libMesh::MeshTools::libmesh_assert_valid_amr_interior_parents(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libmesh_nullptr, libMesh::Elem::n_children(), libMesh::MeshTools::n_levels(), libMesh::Elem::n_neighbors(), libMesh::Elem::n_nodes(), libMesh::Elem::neighbor_ptr(), libMesh::Elem::parent(), libMesh::Elem::point(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::Real, libMesh::remote_elem, libMesh::Elem::set_interior_parent(), libMesh::Elem::set_neighbor(), libMesh::Elem::side_ptr(), libMesh::Elem::subactive(), libMesh::TOLERANCE, libMesh::Elem::which_child_am_i(), and libMesh::NameBasedIO::write().

Referenced by libMesh::TriangleWrapper::copy_tri_to_mesh(), libMesh::MeshCommunication::gather(), libMesh::MeshCommunication::gather_neighboring_elements(), and redistribute().

233 {
234  // We might actually want to run this on an empty mesh
235  // (e.g. the boundary mesh for a nonexistant bcid!)
236  // libmesh_assert_not_equal_to (this->n_nodes(), 0);
237  // libmesh_assert_not_equal_to (this->n_elem(), 0);
238 
239  // This function must be run on all processors at once
240  parallel_object_only();
241 
242  LOG_SCOPE("find_neighbors()", "Mesh");
243 
244  const element_iterator el_end = this->elements_end();
245 
246  //TODO:[BSK] This should be removed later?!
247  if (reset_current_list)
248  for (element_iterator el = this->elements_begin(); el != el_end; ++el)
249  {
250  Elem * e = *el;
251  for (unsigned int s=0; s<e->n_neighbors(); s++)
252  if (e->neighbor_ptr(s) != remote_elem ||
253  reset_remote_elements)
254  e->set_neighbor(s, libmesh_nullptr);
255  }
256 
257  // Find neighboring elements by first finding elements
258  // with identical side keys and then check to see if they
259  // are neighbors
260  {
261  // data structures -- Use the hash_multimap if available
262  typedef unsigned int key_type;
263  typedef std::pair<Elem *, unsigned char> val_type;
264  typedef std::pair<key_type, val_type> key_val_pair;
265 
266  typedef LIBMESH_BEST_UNORDERED_MULTIMAP<key_type, val_type> map_type;
267 
268  // A map from side keys to corresponding elements & side numbers
269  map_type side_to_elem_map;
270 
271 
272 
273  for (element_iterator el = this->elements_begin(); el != el_end; ++el)
274  {
275  Elem * element = *el;
276 
277  for (unsigned char ms=0; ms<element->n_neighbors(); ms++)
278  {
279  next_side:
280  // If we haven't yet found a neighbor on this side, try.
281  // Even if we think our neighbor is remote, that
282  // information may be out of date.
283  if (element->neighbor_ptr(ms) == libmesh_nullptr ||
284  element->neighbor_ptr(ms) == remote_elem)
285  {
286  // Get the key for the side of this element
287  const unsigned int key = element->key(ms);
288 
289  // Look for elements that have an identical side key
290  std::pair <map_type::iterator, map_type::iterator>
291  bounds = side_to_elem_map.equal_range(key);
292 
293  // May be multiple keys, check all the possible
294  // elements which _might_ be neighbors.
295  if (bounds.first != bounds.second)
296  {
297  // Get the side for this element
298  const UniquePtr<Elem> my_side(element->side_ptr(ms));
299 
300  // Look at all the entries with an equivalent key
301  while (bounds.first != bounds.second)
302  {
303  // Get the potential element
304  Elem * neighbor = bounds.first->second.first;
305 
306  // Get the side for the neighboring element
307  const unsigned int ns = bounds.first->second.second;
308  const UniquePtr<Elem> their_side(neighbor->side_ptr(ns));
309  //libmesh_assert(my_side.get());
310  //libmesh_assert(their_side.get());
311 
312  // If found a match with my side
313  //
314  // We need special tests here for 1D:
315  // since parents and children have an equal
316  // side (i.e. a node), we need to check
317  // ns != ms, and we also check level() to
318  // avoid setting our neighbor pointer to
319  // any of our neighbor's descendants
320  if( (*my_side == *their_side) &&
321  (element->level() == neighbor->level()) &&
322  ((element->dim() != 1) || (ns != ms)) )
323  {
324  // So share a side. Is this a mixed pair
325  // of subactive and active/ancestor
326  // elements?
327  // If not, then we're neighbors.
328  // If so, then the subactive's neighbor is
329 
330  if (element->subactive() ==
331  neighbor->subactive())
332  {
333  // an element is only subactive if it has
334  // been coarsened but not deleted
335  element->set_neighbor (ms,neighbor);
336  neighbor->set_neighbor(ns,element);
337  }
338  else if (element->subactive())
339  {
340  element->set_neighbor(ms,neighbor);
341  }
342  else if (neighbor->subactive())
343  {
344  neighbor->set_neighbor(ns,element);
345  }
346  side_to_elem_map.erase (bounds.first);
347 
348  // get out of this nested crap
349  goto next_side;
350  }
351 
352  ++bounds.first;
353  }
354  }
355 
356  // didn't find a match...
357  // Build the map entry for this element
358  key_val_pair kvp;
359 
360  kvp.first = key;
361  kvp.second.first = element;
362  kvp.second.second = ms;
363 
364  // use the lower bound as a hint for
365  // where to put it.
366 #if defined(LIBMESH_HAVE_UNORDERED_MAP) || defined(LIBMESH_HAVE_TR1_UNORDERED_MAP) || defined(LIBMESH_HAVE_HASH_MAP) || defined(LIBMESH_HAVE_EXT_HASH_MAP)
367  side_to_elem_map.insert (kvp);
368 #else
369  side_to_elem_map.insert (bounds.first,kvp);
370 #endif
371  }
372  }
373  }
374  }
375 
376 #ifdef LIBMESH_ENABLE_AMR
377 
405  const unsigned int n_levels = MeshTools::n_levels(*this);
406  for (unsigned int level = 1; level < n_levels; ++level)
407  {
408  element_iterator end = this->level_elements_end(level);
409  for (element_iterator el = this->level_elements_begin(level);
410  el != end; ++el)
411  {
412  Elem * current_elem = *el;
413  libmesh_assert(current_elem);
414  Elem * parent = current_elem->parent();
415  libmesh_assert(parent);
416  const unsigned int my_child_num = parent->which_child_am_i(current_elem);
417 
418  for (unsigned int s=0; s < current_elem->n_neighbors(); s++)
419  {
420  if (current_elem->neighbor_ptr(s) == libmesh_nullptr ||
421  (current_elem->neighbor_ptr(s) == remote_elem &&
422  parent->is_child_on_side(my_child_num, s)))
423  {
424  Elem * neigh = parent->neighbor_ptr(s);
425 
426  // If neigh was refined and had non-subactive children
427  // made remote earlier, then a non-subactive elem should
428  // actually have one of those remote children as a
429  // neighbor
430  if (neigh && (neigh->ancestor()) && (!current_elem->subactive()))
431  {
432 #ifdef DEBUG
433  // Let's make sure that "had children made remote"
434  // situation is actually the case
435  libmesh_assert(neigh->has_children());
436  bool neigh_has_remote_children = false;
437  for (unsigned int c = 0; c != neigh->n_children(); ++c)
438  {
439  if (neigh->child_ptr(c) == remote_elem)
440  neigh_has_remote_children = true;
441  }
442  libmesh_assert(neigh_has_remote_children);
443 
444  // And let's double-check that we don't have
445  // a remote_elem neighboring an active local element
446  if (current_elem->active())
447  libmesh_assert_not_equal_to (current_elem->processor_id(),
448  this->processor_id());
449 #endif // DEBUG
450  neigh = const_cast<RemoteElem *>(remote_elem);
451  }
452 
453  if (!current_elem->subactive())
454  current_elem->set_neighbor(s, neigh);
455 #ifdef DEBUG
456  if (neigh != libmesh_nullptr && neigh != remote_elem)
457  // We ignore subactive elements here because
458  // we don't care about neighbors of subactive element.
459  if ((!neigh->active()) && (!current_elem->subactive()))
460  {
461  libMesh::err << "On processor " << this->processor_id()
462  << std::endl;
463  libMesh::err << "Bad element ID = " << current_elem->id()
464  << ", Side " << s << ", Bad neighbor ID = " << neigh->id() << std::endl;
465  libMesh::err << "Bad element proc_ID = " << current_elem->processor_id()
466  << ", Bad neighbor proc_ID = " << neigh->processor_id() << std::endl;
467  libMesh::err << "Bad element size = " << current_elem->hmin()
468  << ", Bad neighbor size = " << neigh->hmin() << std::endl;
469  libMesh::err << "Bad element center = " << current_elem->centroid()
470  << ", Bad neighbor center = " << neigh->centroid() << std::endl;
471  libMesh::err << "ERROR: "
472  << (current_elem->active()?"Active":"Ancestor")
473  << " Element at level "
474  << current_elem->level() << std::endl;
475  libMesh::err << "with "
476  << (parent->active()?"active":
477  (parent->subactive()?"subactive":"ancestor"))
478  << " parent share "
479  << (neigh->subactive()?"subactive":"ancestor")
480  << " neighbor at level " << neigh->level()
481  << std::endl;
482  NameBasedIO(*this).write ("bad_mesh.gmv");
483  libmesh_error_msg("Problematic mesh written to bad_mesh.gmv.");
484  }
485 #endif // DEBUG
486  }
487  }
488 
489  // We can skip to the next element if we're full-dimension
490  // and therefore don't have any interior parents
491  if (current_elem->dim() >= LIBMESH_DIM)
492  continue;
493 
494  // We have no interior parents unless we can find one later
495  current_elem->set_interior_parent(libmesh_nullptr);
496 
497  Elem * pip = parent->interior_parent();
498 
499  if (!pip)
500  continue;
501 
502  // If there's no interior_parent children, whether due to a
503  // remote element or a non-conformity, then there's no
504  // children to search.
505  if (pip == remote_elem || pip->active())
506  {
507  current_elem->set_interior_parent(pip);
508  continue;
509  }
510 
511  // For node comparisons we'll need a sensible tolerance
512  Real node_tolerance = current_elem->hmin() * TOLERANCE;
513 
514  // Otherwise our interior_parent should be a child of our
515  // parent's interior_parent.
516  for (unsigned int c=0; c != pip->n_children(); ++c)
517  {
518  Elem * child = pip->child_ptr(c);
519 
520  // If we have a remote_elem, that might be our
521  // interior_parent. We'll set it provisionally now and
522  // keep trying to find something better.
523  if (child == remote_elem)
524  {
525  current_elem->set_interior_parent
526  (const_cast<RemoteElem *>(remote_elem));
527  continue;
528  }
529 
530  bool child_contains_our_nodes = true;
531  for (unsigned int n=0; n != current_elem->n_nodes();
532  ++n)
533  {
534  bool child_contains_this_node = false;
535  for (unsigned int cn=0; cn != child->n_nodes();
536  ++cn)
537  if (child->point(cn).absolute_fuzzy_equals
538  (current_elem->point(n), node_tolerance))
539  {
540  child_contains_this_node = true;
541  break;
542  }
543  if (!child_contains_this_node)
544  {
545  child_contains_our_nodes = false;
546  break;
547  }
548  }
549  if (child_contains_our_nodes)
550  {
551  current_elem->set_interior_parent(child);
552  break;
553  }
554  }
555 
556  // We should have found *some* interior_parent at this
557  // point, whether semilocal or remote.
558  libmesh_assert(current_elem->interior_parent());
559  }
560  }
561 
562 #endif // AMR
563 
564 
565 #ifdef DEBUG
567  !reset_remote_elements);
569 #endif
570 }
void libmesh_assert_valid_amr_interior_parents(const MeshBase &mesh)
Definition: mesh_tools.C:1141
bool active() const
Definition: elem.h:1984
virtual element_iterator level_elements_begin(unsigned int level)=0
const class libmesh_nullptr_t libmesh_nullptr
static const Real TOLERANCE
IterBase * end
libmesh_assert(j)
virtual element_iterator elements_begin()=0
virtual element_iterator level_elements_end(unsigned int level)=0
virtual bool is_child_on_side(const unsigned int, const unsigned int) const libmesh_override
Definition: remote_elem.h:136
virtual element_iterator elements_end()=0
unsigned int n_levels(const MeshBase &mesh)
Definition: mesh_tools.C:568
OStreamProxy err(std::cerr)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
void libmesh_assert_valid_neighbors(const MeshBase &mesh, bool assert_valid_remote_elems=true)
Definition: mesh_tools.C:1686
processor_id_type processor_id() const
const RemoteElem * remote_elem
Definition: remote_elem.C:57
void libMesh::DistributedMesh::fix_broken_node_and_element_numbering ( )
virtual

There is no reason for a user to ever call this function.

This function restores a previously broken element/node numbering such that mesh.node_ref(n).id() == n.

Implements libMesh::MeshBase.

Definition at line 1299 of file distributed_mesh.C.

References _elements, _nodes, libMesh::mapvector< Val, index_t >::begin(), libMesh::mapvector< Val, index_t >::end(), end, and libmesh_nullptr.

Referenced by reserve_elem().

1300 {
1301  // We need access to iterators for the underlying containers,
1302  // not the mapvector<> reimplementations.
1305 
1306  // Nodes first
1307  {
1308  mapvector<Node *,dof_id_type>::maptype::iterator
1309  it = nodes.begin(),
1310  end = nodes.end();
1311 
1312  for (; it != end; ++it)
1313  if (it->second != libmesh_nullptr)
1314  it->second->set_id() = it->first;
1315  }
1316 
1317  // Elements next
1318  {
1319  mapvector<Elem *,dof_id_type>::maptype::iterator
1320  it = elems.begin(),
1321  end = elems.end();
1322 
1323  for (; it != end; ++it)
1324  if (it->second != libmesh_nullptr)
1325  it->second->set_id() = it->first;
1326  }
1327 }
std::map< index_t, Val > maptype
Definition: mapvector.h:42
mapvector< Elem *, dof_id_type > _elements
const class libmesh_nullptr_t libmesh_nullptr
IterBase * end
mapvector< Node *, dof_id_type > _nodes
virtual element_iterator libMesh::DistributedMesh::flagged_elements_begin ( unsigned char  rflag)
virtual

Iterate over all elements with a specified refinement flag.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::flagged_elements_begin ( unsigned char  rflag) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::flagged_elements_end ( unsigned char  rflag)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::flagged_elements_end ( unsigned char  rflag) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::flagged_pid_elements_begin ( unsigned char  rflag,
processor_id_type  pid 
)
virtual

Iterate over all elements with a specified refinement flag on a specified processor.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::flagged_pid_elements_begin ( unsigned char  rflag,
processor_id_type  pid 
) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::flagged_pid_elements_end ( unsigned char  rflag,
processor_id_type  pid 
)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::flagged_pid_elements_end ( unsigned char  rflag,
processor_id_type  pid 
) const
virtual

Implements libMesh::MeshBase.

void libMesh::DistributedMesh::gather_to_zero ( )
virtual

Gathers all elements and nodes of the mesh onto processor zero

Reimplemented from libMesh::MeshBase.

Definition at line 1462 of file distributed_mesh.C.

References _is_serial_on_proc_0, and libMesh::MeshCommunication::gather().

Referenced by is_replicated().

1463 {
1465  return;
1466 
1467  _is_serial_on_proc_0 = true;
1468  MeshCommunication().gather(0, *this);
1469 }
const BoundaryInfo& libMesh::MeshBase::get_boundary_info ( ) const
inlineinherited

The information about boundary ids on the mesh

Definition at line 111 of file mesh_base.h.

References libMesh::MeshBase::boundary_info.

Referenced by libMesh::MeshRefinement::_coarsen_elements(), libMesh::MeshTools::Subdivision::add_boundary_ghosts(), libMesh::UnstructuredMesh::all_first_order(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Subdivision::all_subdivision(), libMesh::MeshTools::Modification::all_tri(), libMesh::AbaqusIO::assign_boundary_node_ids(), libMesh::AbaqusIO::assign_sideset_ids(), libMesh::MeshCommunication::broadcast(), libMesh::MeshTools::Generation::build_cube(), libMesh::MeshTools::Generation::build_delaunay_square(), libMesh::MeshTools::Generation::build_extrusion(), libMesh::MeshTools::Generation::build_sphere(), libMesh::MeshTools::Modification::change_boundary_id(), libMesh::DofMap::check_dirichlet_bcid_consistency(), libMesh::MeshBase::clear(), libMesh::Nemesis_IO_Helper::compute_num_global_nodesets(), libMesh::Nemesis_IO_Helper::compute_num_global_sidesets(), libMesh::FEGenericBase< OutputType >::compute_periodic_constraints(), libMesh::FEAbstract::compute_periodic_node_constraints(), libMesh::UnstructuredMesh::create_submesh(), libMesh::TetGenMeshInterface::delete_2D_hull_elements(), libMesh::ReplicatedMesh::delete_elem(), delete_elem(), libMesh::ReplicatedMesh::delete_node(), delete_node(), libMesh::MeshCommunication::delete_remote_elements(), DistributedMesh(), libMesh::MeshTools::Modification::flatten(), libMesh::UNVIO::groups_in(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::BoundaryProjectSolution::operator()(), libMesh::Parallel::Packing< const Node * >::pack(), libMesh::Parallel::Packing< const Elem * >::pack(), libMesh::Parallel::Packing< const Node * >::packable_size(), libMesh::Parallel::Packing< const Elem * >::packable_size(), libMesh::TetGenMeshInterface::pointset_convexhull(), libMesh::Nemesis_IO::prepare_to_write_nodal_data(), libMesh::AbaqusIO::read(), libMesh::Nemesis_IO::read(), libMesh::ExodusII_IO::read(), libMesh::CheckpointIO::read_bcs(), libMesh::CheckpointIO::read_nodesets(), libMesh::ReplicatedMesh::renumber_nodes_and_elements(), renumber_nodes_and_elements(), libMesh::ReplicatedMesh::ReplicatedMesh(), libMesh::ReplicatedMesh::stitching_helper(), libMesh::Elem::topological_neighbor(), libMesh::Parallel::Packing< Node * >::unpack(), libMesh::Parallel::Packing< Elem * >::unpack(), libMesh::FroIO::write(), libMesh::Nemesis_IO::write(), libMesh::ExodusII_IO::write(), libMesh::XdrIO::write(), libMesh::ExodusII_IO::write_nodal_data_common(), libMesh::Nemesis_IO_Helper::write_nodesets(), libMesh::ExodusII_IO_Helper::write_nodesets(), libMesh::Nemesis_IO_Helper::write_sidesets(), and libMesh::ExodusII_IO_Helper::write_sidesets().

111 { return *boundary_info; }
UniquePtr< BoundaryInfo > boundary_info
Definition: mesh_base.h:1256
BoundaryInfo& libMesh::MeshBase::get_boundary_info ( )
inlineinherited

Writeable information about boundary ids on the mesh

Definition at line 116 of file mesh_base.h.

References libMesh::MeshBase::boundary_info, and libMesh::MeshBase::clear().

116 { return *boundary_info; }
UniquePtr< BoundaryInfo > boundary_info
Definition: mesh_base.h:1256
bool libMesh::MeshBase::get_count_lower_dim_elems_in_point_locator ( ) const
inherited

Get the current value of _count_lower_dim_elems_in_point_locator.

Definition at line 566 of file mesh_base.C.

References libMesh::MeshBase::_count_lower_dim_elems_in_point_locator.

Referenced by libMesh::TreeNode< N >::insert().

567 {
569 }
bool _count_lower_dim_elems_in_point_locator
Definition: mesh_base.h:1296
subdomain_id_type libMesh::MeshBase::get_id_by_name ( const std::string &  name) const
inherited

Returns the id of the named subdomain if it exists, Elem::invalid_subdomain_id otherwise.

Definition at line 593 of file mesh_base.C.

References libMesh::MeshBase::_block_id_to_name, and libMesh::Elem::invalid_subdomain_id.

Referenced by libMesh::MeshBase::libmesh_assert_valid_parallel_ids().

594 {
595  // Linear search over the map values.
596  std::map<subdomain_id_type, std::string>::const_iterator
597  iter = _block_id_to_name.begin(),
598  end_iter = _block_id_to_name.end();
599 
600  for ( ; iter != end_iter; ++iter)
601  if (iter->second == name)
602  return iter->first;
603 
604  // If we made it here without returning, we don't have a subdomain
605  // with the requested name, so return Elem::invalid_subdomain_id.
607 }
std::string name(const ElemQuality q)
Definition: elem_quality.C:39
static const subdomain_id_type invalid_subdomain_id
Definition: elem.h:215
std::map< subdomain_id_type, std::string > _block_id_to_name
Definition: mesh_base.h:1338
std::string libMesh::MeshBase::get_info ( ) const
inherited
Returns
a string containing relevant information about the mesh.

Definition at line 412 of file mesh_base.C.

References libMesh::MeshBase::_elem_dims, libMesh::MeshBase::n_active_elem(), libMesh::MeshBase::n_elem(), libMesh::MeshBase::n_local_elem(), libMesh::MeshBase::n_local_nodes(), libMesh::MeshBase::n_nodes(), libMesh::MeshBase::n_partitions(), libMesh::ParallelObject::n_processors(), libMesh::MeshBase::n_subdomains(), libMesh::n_threads(), libMesh::ParallelObject::processor_id(), and libMesh::MeshBase::spatial_dimension().

Referenced by libMesh::MeshBase::n_partitions(), and libMesh::MeshBase::print_info().

413 {
414  std::ostringstream oss;
415 
416  oss << " Mesh Information:" << '\n';
417 
418  if (!_elem_dims.empty())
419  {
420  oss << " elem_dimensions()={";
421  std::copy(_elem_dims.begin(),
422  --_elem_dims.end(), // --end() is valid if the set is non-empty
423  std::ostream_iterator<unsigned int>(oss, ", "));
424  oss << cast_int<unsigned int>(*_elem_dims.rbegin());
425  oss << "}\n";
426  }
427 
428  oss << " spatial_dimension()=" << this->spatial_dimension() << '\n'
429  << " n_nodes()=" << this->n_nodes() << '\n'
430  << " n_local_nodes()=" << this->n_local_nodes() << '\n'
431  << " n_elem()=" << this->n_elem() << '\n'
432  << " n_local_elem()=" << this->n_local_elem() << '\n'
433 #ifdef LIBMESH_ENABLE_AMR
434  << " n_active_elem()=" << this->n_active_elem() << '\n'
435 #endif
436  << " n_subdomains()=" << static_cast<std::size_t>(this->n_subdomains()) << '\n'
437  << " n_partitions()=" << static_cast<std::size_t>(this->n_partitions()) << '\n'
438  << " n_processors()=" << static_cast<std::size_t>(this->n_processors()) << '\n'
439  << " n_threads()=" << static_cast<std::size_t>(libMesh::n_threads()) << '\n'
440  << " processor_id()=" << static_cast<std::size_t>(this->processor_id()) << '\n';
441 
442  return oss.str();
443 }
virtual dof_id_type n_active_elem() const =0
unsigned int n_threads()
Definition: libmesh_base.h:125
dof_id_type n_local_nodes() const
Definition: mesh_base.h:245
unsigned int n_partitions() const
Definition: mesh_base.h:788
processor_id_type n_processors() const
std::set< unsigned char > _elem_dims
Definition: mesh_base.h:1345
unsigned int spatial_dimension() const
Definition: mesh_base.C:157
dof_id_type n_local_elem() const
Definition: mesh_base.h:339
subdomain_id_type n_subdomains() const
Definition: mesh_base.C:332
virtual dof_id_type n_nodes() const =0
virtual dof_id_type n_elem() const =0
processor_id_type processor_id() const
const std::map<subdomain_id_type, std::string>& libMesh::MeshBase::get_subdomain_name_map ( ) const
inlineinherited
virtual element_iterator libMesh::DistributedMesh::ghost_elements_begin ( )
virtual

Iterate over "ghost" elements in the Mesh. A ghost element is one which is not local, but is semilocal.

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::ghost_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::ghost_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::ghost_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

std::set<GhostingFunctor *>::const_iterator libMesh::MeshBase::ghosting_functors_begin ( ) const
inlineinherited
std::set<GhostingFunctor *>::const_iterator libMesh::MeshBase::ghosting_functors_end ( ) const
inlineinherited
Elem * libMesh::DistributedMesh::insert_elem ( Elem e)
virtual

Insert elem e to the element array, preserving its id and replacing/deleting any existing element with the same id.

Users should call MeshBase::prepare_for_use() after elements are added to and/or deleted from the mesh.

Implements libMesh::MeshBase.

Definition at line 504 of file distributed_mesh.C.

References _elements, _n_elem, libMesh::MeshBase::_next_unique_id, _next_unpartitioned_unique_id, delete_elem(), libMesh::DofObject::id(), libMesh::DofObject::invalid_processor_id, libMesh::ParallelObject::n_processors(), libMesh::ParallelObject::processor_id(), libMesh::DofObject::processor_id(), libMesh::DofObject::set_unique_id(), and libMesh::DofObject::valid_unique_id().

Referenced by reserve_elem().

505 {
506  if (_elements[e->id()])
507  this->delete_elem(_elements[e->id()]);
508 
509 #ifdef LIBMESH_ENABLE_UNIQUE_ID
510  if (!e->valid_unique_id())
511  {
512  if (processor_id() == e->processor_id())
513  {
514  e->set_unique_id() = _next_unique_id;
515  _next_unique_id += this->n_processors() + 1;
516  }
517  else
518  {
519  e->set_unique_id() = _next_unpartitioned_unique_id;
521  }
522  }
523 #endif
524 
525  // Try to make the cached elem data more accurate
526  processor_id_type elem_procid = e->processor_id();
527  if (elem_procid == this->processor_id() ||
528  elem_procid == DofObject::invalid_processor_id)
529  _n_elem++;
530 
531  _elements[e->id()] = e;
532 
533  return e;
534 }
mapvector< Elem *, dof_id_type > _elements
processor_id_type n_processors() const
uint8_t processor_id_type
Definition: id_types.h:99
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
unique_id_type _next_unpartitioned_unique_id
virtual void delete_elem(Elem *e) libmesh_override
processor_id_type processor_id() const
Node * libMesh::DistributedMesh::insert_node ( Node n)
virtual

Calls add_node().

Implements libMesh::MeshBase.

Definition at line 702 of file distributed_mesh.C.

References add_node().

Referenced by reserve_elem().

703 {
704  return DistributedMesh::add_node(n);
705 }
virtual Node * add_node(Node *n) libmesh_override
bool libMesh::MeshBase::is_prepared ( ) const
inlineinherited
Returns
true if the mesh has been prepared via a call to prepare_for_use, false otherwise.

Definition at line 127 of file mesh_base.h.

References libMesh::MeshBase::_is_prepared.

Referenced by libMesh::DofMap::build_sparsity(), libMesh::DofMap::create_dof_constraints(), libMesh::DofMap::distribute_dofs(), and libMesh::DofMap::reinit().

128  { return _is_prepared; }
virtual bool libMesh::DistributedMesh::is_replicated ( ) const
inlinevirtual
Returns
true if new elements and nodes can and should be created in synchronization on all processors, false otherwise

Reimplemented from libMesh::MeshBase.

Definition at line 125 of file distributed_mesh.h.

References add_extra_ghost_elem(), allgather(), delete_remote_elements(), gather_to_zero(), libmesh_assert_valid_parallel_flags(), libmesh_assert_valid_parallel_ids(), libmesh_assert_valid_parallel_object_ids(), libmesh_assert_valid_parallel_p_levels(), renumber_dof_objects(), and renumber_nodes_and_elements().

126  { return false; }
virtual bool libMesh::DistributedMesh::is_serial ( ) const
inlinevirtual
Returns
true if all elements and nodes of the mesh exist on the current processor, false otherwise

Reimplemented from libMesh::MeshBase.

Definition at line 118 of file distributed_mesh.h.

References _is_serial.

Referenced by libMesh::MeshCommunication::delete_remote_elements(), libMesh::MeshCommunication::redistribute(), and redistribute().

119  { return _is_serial; }
virtual element_iterator libMesh::DistributedMesh::level_elements_begin ( unsigned int  level)
virtual
virtual const_element_iterator libMesh::DistributedMesh::level_elements_begin ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::level_elements_end ( unsigned int  level)
virtual
virtual const_element_iterator libMesh::DistributedMesh::level_elements_end ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

void libMesh::DistributedMesh::libmesh_assert_valid_parallel_flags ( ) const

Verify refinement_flag and p_refinement_flag consistency of our elements containers. Calls libmesh_assert() on each possible failure.

Definition at line 951 of file distributed_mesh.C.

References _elements, libMesh::Elem::active(), libMesh::ParallelObject::comm(), libMesh::invalid_uint, libMesh::libmesh_assert(), libmesh_nullptr, libMesh::Elem::p_refinement_flag(), parallel_max_elem_id(), and libMesh::Elem::refinement_flag().

Referenced by allgather(), delete_remote_elements(), is_replicated(), and renumber_nodes_and_elements().

952 {
953 #if defined(LIBMESH_ENABLE_AMR) && !defined(NDEBUG)
954  // This function must be run on all processors at once
955  parallel_object_only();
956 
957  dof_id_type pmax_elem_id = this->parallel_max_elem_id();
958 
959  for (dof_id_type i=0; i != pmax_elem_id; ++i)
960  {
961  Elem * el = _elements[i]; // Returns NULL if there's no map entry
962 
963  unsigned int refinement_flag = el ?
964  static_cast<unsigned int> (el->refinement_flag()) : libMesh::invalid_uint;
965  unsigned int p_refinement_flag = el ?
966  static_cast<unsigned int> (el->p_refinement_flag()) : libMesh::invalid_uint;
967 
968  libmesh_assert(this->comm().semiverify(el ? &refinement_flag : libmesh_nullptr));
969 
970  // p refinement flags aren't always kept correct on inactive
971  // ghost elements
972  libmesh_assert(this->comm().semiverify((el && el->active()) ? &p_refinement_flag : libmesh_nullptr));
973  }
974 #endif // LIBMESH_ENABLE_AMR
975 }
mapvector< Elem *, dof_id_type > _elements
const unsigned int invalid_uint
Definition: libmesh.h:184
const class libmesh_nullptr_t libmesh_nullptr
dof_id_type parallel_max_elem_id() const
libmesh_assert(j)
const Parallel::Communicator & comm() const
uint8_t dof_id_type
Definition: id_types.h:64
void libMesh::DistributedMesh::libmesh_assert_valid_parallel_ids ( ) const
virtual

Verify id and processor_id consistency of our elements and nodes containers. Calls libmesh_assert() on each possible failure.

Reimplemented from libMesh::MeshBase.

Definition at line 920 of file distributed_mesh.C.

References _elements, _nodes, and libmesh_assert_valid_parallel_object_ids().

Referenced by libMesh::BoundaryInfo::add_elements(), allgather(), delete_remote_elements(), is_replicated(), and renumber_nodes_and_elements().

921 {
924 }
mapvector< Elem *, dof_id_type > _elements
mapvector< Node *, dof_id_type > _nodes
void libmesh_assert_valid_parallel_object_ids(const mapvector< T *, dof_id_type > &) const
template<typename T >
void libMesh::DistributedMesh::libmesh_assert_valid_parallel_object_ids ( const mapvector< T *, dof_id_type > &  objects) const

Verify id, processor_id, and if applicable unique_id consistency of a parallel objects container. Calls libmesh_assert() on each possible failure in that container.

Definition at line 864 of file distributed_mesh.C.

References libMesh::ParallelObject::comm(), libMesh::DofObject::invalid_id, libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), libmesh_nullptr, std::max(), libMesh::Parallel::Communicator::min(), parallel_max_elem_id(), parallel_max_node_id(), and libMesh::ParallelObject::processor_id().

Referenced by is_replicated(), and libmesh_assert_valid_parallel_ids().

865 {
866  // This function must be run on all processors at once
867  parallel_object_only();
868 
869  const dof_id_type pmax_node_id = this->parallel_max_node_id();
870  const dof_id_type pmax_elem_id = this->parallel_max_elem_id();
871  const dof_id_type pmax_id = std::max(pmax_node_id, pmax_elem_id);
872 
873  for (dof_id_type i=0; i != pmax_id; ++i)
874  {
875  T * obj = objects[i]; // Returns NULL if there's no map entry
876 
877  // Local lookups by id should return the requested object
878  libmesh_assert(!obj || obj->id() == i);
879 
880  // All processors with an object should agree on id
881 #ifndef NDEBUG
882  const dof_id_type dofid = obj && obj->valid_id() ?
883  obj->id() : DofObject::invalid_id;
884  libmesh_assert(this->comm().semiverify(obj ? &dofid : libmesh_nullptr));
885 #endif
886 
887  // All processors with an object should agree on processor id
888  const dof_id_type procid = obj && obj->valid_processor_id() ?
889  obj->processor_id() : DofObject::invalid_processor_id;
890  libmesh_assert(this->comm().semiverify(obj ? &procid : libmesh_nullptr));
891 
892  dof_id_type min_procid = procid;
893  this->comm().min(min_procid);
894 
895  // Either:
896  // 1.) I own this elem (min_procid == this->processor_id()) *and* I have a valid pointer to it (obj != NULL)
897  // or
898  // 2.) I don't own this elem (min_procid != this->processor_id()). (In this case I may or may not have a valid pointer to it.)
899 
900  // Original assert logic
901  // libmesh_assert (min_procid != this->processor_id() || obj);
902 
903  // More human-understandable logic...
905  ((min_procid == this->processor_id()) && obj)
906  ||
907  (min_procid != this->processor_id())
908  );
909 
910 #if defined(LIBMESH_ENABLE_UNIQUE_ID) && !defined(NDEBUG)
911  // All processors with an object should agree on unique id
912  const unique_id_type uniqueid = obj ? obj->unique_id() : 0;
913  libmesh_assert(this->comm().semiverify(obj ? &uniqueid : libmesh_nullptr));
914 #endif
915  }
916 }
const class libmesh_nullptr_t libmesh_nullptr
dof_id_type parallel_max_elem_id() const
long double max(long double a, double b)
libmesh_assert(j)
dof_id_type parallel_max_node_id() const
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
static const dof_id_type invalid_id
Definition: dof_object.h:335
const Parallel::Communicator & comm() const
uint8_t unique_id_type
Definition: id_types.h:79
processor_id_type processor_id() const
uint8_t dof_id_type
Definition: id_types.h:64
void libMesh::DistributedMesh::libmesh_assert_valid_parallel_p_levels ( ) const

Verify p_level consistency of our elements containers. Calls libmesh_assert() on each possible failure.

Definition at line 928 of file distributed_mesh.C.

References _elements, libMesh::Elem::active(), libMesh::ParallelObject::comm(), libMesh::invalid_uint, libMesh::libmesh_assert(), libmesh_nullptr, libMesh::Elem::p_level(), and parallel_max_elem_id().

Referenced by is_replicated(), and renumber_nodes_and_elements().

929 {
930 #ifndef NDEBUG
931  // This function must be run on all processors at once
932  parallel_object_only();
933 
934  dof_id_type pmax_elem_id = this->parallel_max_elem_id();
935 
936  for (dof_id_type i=0; i != pmax_elem_id; ++i)
937  {
938  Elem * el = _elements[i]; // Returns NULL if there's no map entry
939 
940  unsigned int p_level = el ? (el->p_level()) : libMesh::invalid_uint;
941 
942  // All processors with an active element should agree on p level
943  libmesh_assert(this->comm().semiverify((el && el->active()) ? &p_level : libmesh_nullptr));
944  }
945 #endif
946 }
mapvector< Elem *, dof_id_type > _elements
const unsigned int invalid_uint
Definition: libmesh.h:184
const class libmesh_nullptr_t libmesh_nullptr
dof_id_type parallel_max_elem_id() const
libmesh_assert(j)
const Parallel::Communicator & comm() const
uint8_t dof_id_type
Definition: id_types.h:64
virtual element_iterator libMesh::DistributedMesh::local_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::local_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::local_level_elements_begin ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_level_elements_begin ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::local_level_elements_end ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_level_elements_end ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::local_nodes_begin ( )
virtual

Iterate over local nodes (nodes whose processor_id() matches the current processor).

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::local_nodes_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::local_nodes_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_node_iterator libMesh::DistributedMesh::local_nodes_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::local_not_level_elements_begin ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_not_level_elements_begin ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::local_not_level_elements_end ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::local_not_level_elements_end ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual dof_id_type libMesh::DistributedMesh::max_elem_id ( ) const
inlinevirtual

Returns a number greater than or equal to the maximum element id in the mesh.

Implements libMesh::MeshBase.

Definition at line 208 of file distributed_mesh.h.

References _max_elem_id.

Referenced by allgather(), libMesh::MeshCommunication::delete_remote_elements(), delete_remote_elements(), DistributedMesh(), and renumber_nodes_and_elements().

208 { return _max_elem_id; }
virtual dof_id_type libMesh::DistributedMesh::max_node_id ( ) const
inlinevirtual

Returns a number greater than or equal to the maximum node id in the mesh.

Implements libMesh::MeshBase.

Definition at line 204 of file distributed_mesh.h.

References _max_node_id.

Referenced by allgather(), libMesh::MeshCommunication::delete_remote_elements(), delete_remote_elements(), DistributedMesh(), and renumber_nodes_and_elements().

204 { return _max_node_id; }
unsigned int libMesh::MeshBase::mesh_dimension ( ) const
inherited
Returns
the logical dimension of the mesh; i.e. the manifold dimension of the elements in the mesh. If we ever support multi-dimensional meshes (e.g. hexes and quads in the same mesh) then this will return the largest such dimension.

Definition at line 148 of file mesh_base.C.

References libMesh::MeshBase::_elem_dims.

Referenced by libMesh::UniformRefinementEstimator::_estimate_error(), libMesh::HPCoarsenTest::add_projection(), libMesh::UnstructuredMesh::all_second_order(), libMesh::MeshTools::Modification::all_tri(), libMesh::MeshTools::Generation::build_cube(), libMesh::EquationSystems::build_discontinuous_solution_vector(), libMesh::EquationSystems::build_parallel_solution_vector(), libMesh::MeshTools::Generation::build_sphere(), libMesh::EquationSystems::build_variable_names(), libMesh::MeshBase::cache_elem_dims(), libMesh::DofMap::create_dof_constraints(), libMesh::MeshBase::delete_remote_elements(), libMesh::MeshTools::Modification::distort(), libMesh::ExactErrorEstimator::estimate_error(), libMesh::MeshRefinement::flag_elements_by_elem_fraction(), libMesh::MeshRefinement::flag_elements_by_nelem_target(), libMesh::LaplaceMeshSmoother::init(), libMesh::PointLocatorTree::init(), libMesh::ExodusII_IO_Helper::initialize(), libMesh::FEInterface::n_vec_dim(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::BoundaryProjectSolution::operator()(), libMesh::GMVIO::read(), libMesh::Nemesis_IO::read(), libMesh::ExodusII_IO::read(), libMesh::VTKIO::read(), libMesh::XdrIO::read_serialized_connectivity(), libMesh::HPCoarsenTest::select_refinement(), libMesh::MeshTools::Modification::smooth(), libMesh::DofMap::use_coupled_neighbor_dofs(), libMesh::PostscriptIO::write(), libMesh::CheckpointIO::write(), libMesh::TecplotIO::write_binary(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::UCDIO::write_nodal_data(), libMesh::EnsightIO::write_scalar_ascii(), libMesh::GnuPlotIO::write_solution(), and libMesh::EnsightIO::write_vector_ascii().

149 {
150  if (!_elem_dims.empty())
151  return cast_int<unsigned int>(*_elem_dims.rbegin());
152  return 0;
153 }
std::set< unsigned char > _elem_dims
Definition: mesh_base.h:1345
dof_id_type libMesh::DistributedMesh::n_active_elem ( ) const
virtual

Returns the number of active elements in the mesh. Implemented in terms of active_element_iterators.

Implements libMesh::MeshBase.

Definition at line 1331 of file distributed_mesh.C.

References active_local_elements_begin(), active_local_elements_end(), active_pid_elements_begin(), active_pid_elements_end(), libMesh::ParallelObject::comm(), libMesh::DofObject::invalid_processor_id, and libMesh::Parallel::Communicator::sum().

Referenced by n_elem().

1332 {
1333  parallel_object_only();
1334 
1335  // Get local active elements first
1336  dof_id_type active_elements =
1337  static_cast<dof_id_type>(std::distance (this->active_local_elements_begin(),
1338  this->active_local_elements_end()));
1339  this->comm().sum(active_elements);
1340 
1341  // Then add unpartitioned active elements, which should exist on
1342  // every processor
1343  active_elements +=
1344  static_cast<dof_id_type>(std::distance
1347  return active_elements;
1348 }
virtual element_iterator active_local_elements_begin() libmesh_override
virtual element_iterator active_local_elements_end() libmesh_override
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
virtual element_iterator active_pid_elements_begin(processor_id_type proc_id) libmesh_override
const Parallel::Communicator & comm() const
uint8_t dof_id_type
Definition: id_types.h:64
virtual element_iterator active_pid_elements_end(processor_id_type proc_id) libmesh_override
dof_id_type libMesh::MeshBase::n_active_elem_on_proc ( const processor_id_type  proc) const
inherited

Returns the number of active elements on processor proc.

Definition at line 373 of file mesh_base.C.

References libMesh::MeshBase::active_pid_elements_begin(), libMesh::MeshBase::active_pid_elements_end(), and libMesh::ParallelObject::n_processors().

Referenced by libMesh::MeshBase::n_active_local_elem(), and libMesh::MeshBase::n_unpartitioned_elem().

374 {
375  libmesh_assert_less (proc_id, this->n_processors());
376  return static_cast<dof_id_type>(std::distance (this->active_pid_elements_begin(proc_id),
377  this->active_pid_elements_end (proc_id)));
378 }
processor_id_type n_processors() const
virtual element_iterator active_pid_elements_begin(processor_id_type proc_id)=0
virtual element_iterator active_pid_elements_end(processor_id_type proc_id)=0
uint8_t dof_id_type
Definition: id_types.h:64
dof_id_type libMesh::MeshBase::n_active_local_elem ( ) const
inlineinherited
dof_id_type libMesh::MeshBase::n_active_sub_elem ( ) const
inherited

Same, but only counts active elements.

Definition at line 397 of file mesh_base.C.

References libMesh::MeshBase::active_elements_begin(), libMesh::MeshBase::active_elements_end(), and end.

Referenced by libMesh::MeshBase::n_active_local_elem(), libMesh::TecplotIO::write_ascii(), libMesh::GMVIO::write_ascii_old_impl(), and libMesh::TecplotIO::write_binary().

398 {
399  dof_id_type ne=0;
400 
401  const_element_iterator el = this->active_elements_begin();
402  const const_element_iterator end = this->active_elements_end();
403 
404  for (; el!=end; ++el)
405  ne += (*el)->n_sub_elem();
406 
407  return ne;
408 }
IterBase * end
virtual element_iterator active_elements_begin()=0
virtual element_iterator active_elements_end()=0
uint8_t dof_id_type
Definition: id_types.h:64
virtual dof_id_type libMesh::DistributedMesh::n_elem ( ) const
inlinevirtual

Returns the number of elements in the mesh. The standard n_elem() function may return a cached value on distributed meshes, and so can be called by any processor at any time.

Implements libMesh::MeshBase.

Definition at line 206 of file distributed_mesh.h.

References _n_elem, and n_active_elem().

Referenced by allgather(), delete_remote_elements(), DistributedMesh(), libMesh::MeshCommunication::gather(), and renumber_nodes_and_elements().

206 { return _n_elem; }
dof_id_type libMesh::MeshBase::n_elem_on_proc ( const processor_id_type  proc) const
inherited

Returns the number of elements on processor proc.

Definition at line 360 of file mesh_base.C.

References libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), libMesh::ParallelObject::n_processors(), libMesh::MeshBase::pid_elements_begin(), and libMesh::MeshBase::pid_elements_end().

Referenced by libMesh::MeshBase::n_local_elem(), libMesh::MeshBase::n_unpartitioned_elem(), and libMesh::MeshBase::set_next_unique_id().

361 {
362  // We're either counting a processor's elements or unpartitioned
363  // elements
364  libmesh_assert (proc_id < this->n_processors() ||
366 
367  return static_cast<dof_id_type>(std::distance (this->pid_elements_begin(proc_id),
368  this->pid_elements_end (proc_id)));
369 }
processor_id_type n_processors() const
libmesh_assert(j)
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
virtual element_iterator pid_elements_begin(processor_id_type proc_id)=0
uint8_t dof_id_type
Definition: id_types.h:64
virtual element_iterator pid_elements_end(processor_id_type proc_id)=0
dof_id_type libMesh::MeshBase::n_local_elem ( ) const
inlineinherited

Returns the number of elements on the local processor.

Definition at line 339 of file mesh_base.h.

References libMesh::MeshBase::n_elem_on_proc(), and libMesh::ParallelObject::processor_id().

Referenced by libMesh::MeshBase::get_info(), and parallel_n_elem().

340  { return this->n_elem_on_proc (this->processor_id()); }
dof_id_type n_elem_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:360
processor_id_type processor_id() const
dof_id_type libMesh::MeshBase::n_local_nodes ( ) const
inlineinherited

Returns the number of nodes on the local processor.

Definition at line 245 of file mesh_base.h.

References libMesh::MeshBase::n_nodes_on_proc(), and libMesh::ParallelObject::processor_id().

Referenced by libMesh::MeshBase::get_info(), libMesh::VTKIO::nodes_to_vtk(), and parallel_n_nodes().

246  { return this->n_nodes_on_proc (this->processor_id()); }
dof_id_type n_nodes_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:347
processor_id_type processor_id() const
virtual dof_id_type libMesh::DistributedMesh::n_nodes ( ) const
inlinevirtual

Returns the number of nodes in the mesh. This function and others must be defined in derived classes since the MeshBase class has no specific storage for nodes or elements. The standard n_nodes() function may return a cached value on distributed meshes, and so can be called by any processor at any time.

Implements libMesh::MeshBase.

Definition at line 203 of file distributed_mesh.h.

References _n_nodes.

Referenced by allgather(), delete_remote_elements(), DistributedMesh(), libMesh::MeshCommunication::gather(), and renumber_nodes_and_elements().

203 { return _n_nodes; }
dof_id_type libMesh::MeshBase::n_nodes_on_proc ( const processor_id_type  proc) const
inherited

Returns the number of nodes on processor proc.

Definition at line 347 of file mesh_base.C.

References libMesh::DofObject::invalid_processor_id, libMesh::libmesh_assert(), libMesh::ParallelObject::n_processors(), libMesh::MeshBase::pid_nodes_begin(), and libMesh::MeshBase::pid_nodes_end().

Referenced by libMesh::MeshBase::elem_dimensions(), libMesh::MeshBase::n_local_nodes(), and libMesh::MeshBase::n_unpartitioned_nodes().

348 {
349  // We're either counting a processor's nodes or unpartitioned
350  // nodes
351  libmesh_assert (proc_id < this->n_processors() ||
353 
354  return static_cast<dof_id_type>(std::distance (this->pid_nodes_begin(proc_id),
355  this->pid_nodes_end (proc_id)));
356 }
virtual node_iterator pid_nodes_end(processor_id_type proc_id)=0
processor_id_type n_processors() const
libmesh_assert(j)
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
virtual node_iterator pid_nodes_begin(processor_id_type proc_id)=0
uint8_t dof_id_type
Definition: id_types.h:64
unsigned int libMesh::MeshBase::n_partitions ( ) const
inlineinherited

Returns the number of partitions which have been defined via a call to either mesh.partition() or by building a Partitioner object and calling partition. Note that the partitioner objects are responsible for setting this value.

Definition at line 788 of file mesh_base.h.

References libMesh::MeshBase::_n_parts, libMesh::MeshBase::all_first_order(), libMesh::MeshBase::all_second_order(), libMesh::MeshBase::get_info(), libmesh_nullptr, libMesh::Quality::name(), libMesh::MeshBase::operator<<, libMesh::out, libMesh::MeshBase::print_info(), libMesh::MeshBase::read(), and libMesh::MeshBase::write().

Referenced by libMesh::MeshBase::get_info(), libMesh::BoundaryInfo::sync(), libMesh::NameBasedIO::write(), libMesh::GMVIO::write_ascii_new_impl(), and libMesh::GMVIO::write_ascii_old_impl().

789  { return _n_parts; }
unsigned int _n_parts
Definition: mesh_base.h:1276
processor_id_type libMesh::ParallelObject::n_processors ( ) const
inlineinherited
Returns
the number of processors in the group.

Definition at line 93 of file parallel_object.h.

References libMesh::ParallelObject::_communicator, and libMesh::Parallel::Communicator::size().

Referenced by libMesh::ParmetisPartitioner::_do_repartition(), libMesh::BoundaryInfo::_find_id_maps(), add_elem(), add_node(), libMesh::LaplaceMeshSmoother::allgather_graph(), libMesh::FEMSystem::assembly(), libMesh::ParmetisPartitioner::assign_partitioning(), libMesh::AztecLinearSolver< T >::AztecLinearSolver(), libMesh::MeshCommunication::broadcast(), libMesh::BoundaryInfo::build_node_list_from_side_list(), clear(), libMesh::Nemesis_IO_Helper::compute_border_node_ids(), libMesh::Nemesis_IO_Helper::construct_nemesis_filename(), libMesh::MeshTools::correct_node_proc_ids(), libMesh::UnstructuredMesh::create_pid_mesh(), libMesh::DofMap::distribute_dofs(), libMesh::DofMap::distribute_local_dofs_node_major(), libMesh::DofMap::distribute_local_dofs_var_major(), DistributedMesh(), libMesh::EnsightIO::EnsightIO(), libMesh::MeshCommunication::gather(), libMesh::MeshCommunication::gather_neighboring_elements(), libMesh::MeshBase::get_info(), libMesh::EquationSystems::get_solution(), libMesh::DistributedVector< T >::init(), libMesh::SystemSubsetBySubdomain::init(), libMesh::ParmetisPartitioner::initialize(), libMesh::Nemesis_IO_Helper::initialize(), insert_elem(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Elem >(), libMesh::MeshTools::libmesh_assert_parallel_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_topology_consistent_procids< Node >(), libMesh::MeshTools::libmesh_assert_valid_boundary_ids(), libMesh::MeshTools::libmesh_assert_valid_dof_ids(), libMesh::MeshTools::libmesh_assert_valid_neighbors(), libMesh::MeshTools::libmesh_assert_valid_refinement_flags(), libMesh::DofMap::local_variable_indices(), libMesh::MeshBase::n_active_elem_on_proc(), libMesh::MeshBase::n_elem_on_proc(), libMesh::MeshBase::n_nodes_on_proc(), libMesh::SparsityPattern::Build::parallel_sync(), libMesh::Partitioner::partition(), libMesh::MeshBase::partition(), libMesh::Partitioner::partition_unpartitioned_elements(), libMesh::PetscLinearSolver< T >::PetscLinearSolver(), libMesh::System::point_gradient(), libMesh::System::point_hessian(), libMesh::System::point_value(), libMesh::SparseMatrix< T >::print(), libMesh::MeshTools::processor_bounding_box(), libMesh::NameBasedIO::read(), libMesh::Nemesis_IO::read(), libMesh::XdrIO::read(), libMesh::MeshCommunication::redistribute(), renumber_dof_objects(), libMesh::Partitioner::repartition(), libMesh::MeshCommunication::send_coarse_ghosts(), libMesh::Partitioner::set_node_processor_ids(), libMesh::DofMap::set_nonlocal_dof_objects(), libMesh::Parallel::Sort< KeyType, IdxType >::sort(), update_parallel_id_counts(), libMesh::GMVIO::write_binary(), libMesh::GMVIO::write_discontinuous_gmv(), libMesh::XdrIO::write_serialized_bcs_helper(), libMesh::XdrIO::write_serialized_connectivity(), libMesh::XdrIO::write_serialized_nodes(), and libMesh::XdrIO::write_serialized_nodesets().

94  { return cast_int<processor_id_type>(_communicator.size()); }
unsigned int size() const
Definition: parallel.h:679
const Parallel::Communicator & _communicator
dof_id_type libMesh::MeshBase::n_sub_elem ( ) const
inherited

This function returns the number of elements that will be written out in the Tecplot format. For example, a 9-noded quadrilateral will be broken into 4 linear sub-elements for plotting purposes. Thus, for a mesh of 2 QUAD9 elements n_tecplot_elem() will return 8. Implemented in terms of element_iterators.

Definition at line 382 of file mesh_base.C.

References libMesh::MeshBase::elements_begin(), libMesh::MeshBase::elements_end(), and end.

Referenced by libMesh::MeshBase::n_active_local_elem().

383 {
384  dof_id_type ne=0;
385 
386  const_element_iterator el = this->elements_begin();
387  const const_element_iterator end = this->elements_end();
388 
389  for (; el!=end; ++el)
390  ne += (*el)->n_sub_elem();
391 
392  return ne;
393 }
IterBase * end
virtual element_iterator elements_begin()=0
virtual element_iterator elements_end()=0
uint8_t dof_id_type
Definition: id_types.h:64
subdomain_id_type libMesh::MeshBase::n_subdomains ( ) const
inherited

Returns the number of subdomains in the global mesh. Subdomains correspond to separate subsets of the mesh which could correspond e.g. to different materials in a solid mechanics application, or regions where different physical processes are important. The subdomain mapping is independent from the parallel decomposition.

Definition at line 332 of file mesh_base.C.

References libMesh::MeshBase::subdomain_ids().

Referenced by libMesh::MeshBase::get_info(), libMesh::MeshBase::ghosting_functors_end(), libMesh::XdrIO::write(), and libMesh::NameBasedIO::write_nodal_data().

333 {
334  // This requires an inspection on every processor
335  parallel_object_only();
336 
337  std::set<subdomain_id_type> ids;
338 
339  this->subdomain_ids (ids);
340 
341  return cast_int<subdomain_id_type>(ids.size());
342 }
void subdomain_ids(std::set< subdomain_id_type > &ids) const
Definition: mesh_base.C:313
dof_id_type libMesh::MeshBase::n_unpartitioned_elem ( ) const
inlineinherited

Returns the number of elements owned by no processor.

Definition at line 345 of file mesh_base.h.

References libMesh::DofObject::invalid_processor_id, libMesh::MeshBase::n_active_elem_on_proc(), and libMesh::MeshBase::n_elem_on_proc().

Referenced by parallel_n_elem(), and libMesh::MeshBase::partition().

dof_id_type n_elem_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:360
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
dof_id_type libMesh::MeshBase::n_unpartitioned_nodes ( ) const
inlineinherited

Returns the number of nodes owned by no processor.

Definition at line 251 of file mesh_base.h.

References libMesh::DofObject::invalid_processor_id, libMesh::MeshBase::max_node_id(), and libMesh::MeshBase::n_nodes_on_proc().

Referenced by parallel_n_nodes().

dof_id_type n_nodes_on_proc(const processor_id_type proc) const
Definition: mesh_base.C:347
static const processor_id_type invalid_processor_id
Definition: dof_object.h:346
unique_id_type libMesh::MeshBase::next_unique_id ( )
inlineinherited

Returns the next unique id to be used.

Definition at line 264 of file mesh_base.h.

References libMesh::MeshBase::_next_unique_id.

264 { return _next_unique_id; }
unique_id_type _next_unique_id
Definition: mesh_base.h:1310
virtual const Node& libMesh::MeshBase::node ( const dof_id_type  i) const
inlinevirtualinherited

Return a constant reference (for reading only) to the $ i^{th} $ node, which should be present in this processor's subset of the mesh data structure.

This method is deprecated; use the less confusingly-named node_ref() instead.

Definition at line 405 of file mesh_base.h.

References libMesh::MeshBase::node_ptr().

Referenced by libMesh::MeshBase::cache_elem_dims(), and libMesh::MeshTools::Modification::change_boundary_id().

406  {
407  libmesh_deprecated();
408  return *this->node_ptr(i);
409  }
virtual const Node * node_ptr(const dof_id_type i) const =0
virtual Node& libMesh::MeshBase::node ( const dof_id_type  i)
inlinevirtualinherited

Return a reference to the $ i^{th} $ node, which should be present in this processor's subset of the mesh data structure.

This method is deprecated; use the less confusingly-named node_ref() instead.

Definition at line 418 of file mesh_base.h.

References libMesh::MeshBase::node_ptr(), and libMesh::MeshBase::query_node_ptr().

419  {
420  libmesh_deprecated();
421  return *this->node_ptr(i);
422  }
virtual const Node * node_ptr(const dof_id_type i) const =0
const Node * libMesh::DistributedMesh::node_ptr ( const dof_id_type  i) const
virtual

Return a pointer to the $ i^{th} $ node, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 300 of file distributed_mesh.C.

References _nodes, and libMesh::libmesh_assert().

Referenced by reserve_elem().

301 {
303  libmesh_assert_equal_to (_nodes[i]->id(), i);
304 
305  return _nodes[i];
306 }
libmesh_assert(j)
mapvector< Node *, dof_id_type > _nodes
Node * libMesh::DistributedMesh::node_ptr ( const dof_id_type  i)
virtual

Return a writeable pointer to the $ i^{th} $ node, which should be present in this processor's subset of the mesh data structure.

Implements libMesh::MeshBase.

Definition at line 311 of file distributed_mesh.C.

References _nodes, and libMesh::libmesh_assert().

312 {
314  libmesh_assert_equal_to (_nodes[i]->id(), i);
315 
316  return _nodes[i];
317 }
libmesh_assert(j)
mapvector< Node *, dof_id_type > _nodes
virtual const Node& libMesh::MeshBase::node_ref ( const dof_id_type  i) const
inlinevirtualinherited
virtual Node& libMesh::MeshBase::node_ref ( const dof_id_type  i)
inlinevirtualinherited

Return a reference to the $ i^{th} $ node, which should be present in this processor's subset of the mesh data structure.

Definition at line 393 of file mesh_base.h.

References libMesh::MeshBase::node_ptr().

393  {
394  return *this->node_ptr(i);
395  }
virtual const Node * node_ptr(const dof_id_type i) const =0
virtual node_iterator libMesh::DistributedMesh::nodes_begin ( )
virtual
virtual const_node_iterator libMesh::DistributedMesh::nodes_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual node_iterator libMesh::DistributedMesh::nodes_end ( )
virtual
virtual const_node_iterator libMesh::DistributedMesh::nodes_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_active_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_active_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_active_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_active_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_ancestor_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_ancestor_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_ancestor_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_ancestor_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_level_elements_begin ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_level_elements_begin ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_level_elements_end ( unsigned int  level)
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_level_elements_end ( unsigned int  level) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_local_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_local_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_local_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_local_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_subactive_elements_begin ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_subactive_elements_begin ( ) const
virtual

Implements libMesh::MeshBase.

virtual element_iterator libMesh::DistributedMesh::not_subactive_elements_end ( )
virtual

Implements libMesh::MeshBase.

Referenced by reserve_elem().

virtual const_element_iterator libMesh::DistributedMesh::not_subactive_elements_end ( ) const
virtual

Implements libMesh::MeshBase.

dof_id_type libMesh::DistributedMesh::parallel_max_elem_id ( ) const

Definition at line 205 of file distributed_mesh.C.

References _elements, libMesh::ParallelObject::comm(), and libMesh::Parallel::Communicator::max().

Referenced by allgather(), libMesh::MeshCommunication::delete_remote_elements(), delete_remote_elements(), libmesh_assert_valid_parallel_flags(), libmesh_assert_valid_parallel_object_ids(), libmesh_assert_valid_parallel_p_levels(), renumber_nodes_and_elements(), reserve_elem(), and update_parallel_id_counts().

206 {
207  // This function must be run on all processors at once
208  parallel_object_only();
209 
210  dof_id_type max_local = 0;
211 
212  mapvector<Elem *,dof_id_type>::maptype::const_reverse_iterator
213  rit = _elements.rbegin();
214 
215  const mapvector<Elem *,dof_id_type>::maptype::const_reverse_iterator
216  rend = _elements.rend();
217 
218  // Look for the maximum element id. Search backwards through
219  // elements so we can break out early. Beware of NULL entries that
220  // haven't yet been cleared from _elements.
221  for (; rit != rend; ++rit)
222  if (rit->second)
223  {
224  libmesh_assert_equal_to(rit->second->id(), rit->first);
225  max_local = rit->first + 1;
226  break;
227  }
228 
229  this->comm().max(max_local);
230  return max_local;
231 }
mapvector< Elem *, dof_id_type > _elements
const Parallel::Communicator & comm() const
uint8_t dof_id_type
Definition: id_types.h:64
dof_id_type libMesh::DistributedMesh::parallel_max_node_id ( ) const

Definition at line 263 of file distributed_mesh.C.

References _nodes, libMesh::ParallelObject::comm(), and libMesh::Parallel::Communicator::max().

Referenced by allgather(), libMesh::MeshCommunication::delete_remote_elements(), delete_remote_elements(), libmesh_assert_valid_parallel_object_ids(), renumber_nodes_and_elements(), reserve_elem(), and update_parallel_id_counts().

264 {
265  // This function must be run on all processors at once
266  parallel_object_only();
267 
268  dof_id_type max_local = 0;
269 
270  mapvector<Node *,dof_id_type>::maptype::const_reverse_iterator
271  rit = _nodes.rbegin();
272 
273  const mapvector<Node *,dof_id_type>::maptype::const_reverse_iterator
274  rend = _nodes.rend();