20 #ifndef LIBMESH_RB_CONSTRUCTION_BASE_H 21 #define LIBMESH_RB_CONSTRUCTION_BASE_H 63 const std::string &
name,
64 const unsigned int number);
85 virtual void clear ();
128 unsigned int n_training_parameters,
129 std::map<std::string, bool> log_param_scale,
130 bool deterministic=
true);
135 virtual void load_training_set(std::map<std::string, std::vector<Number>> & new_training_set);
206 std::pair<numeric_index_type, Real> & error_pair);
212 std::map<std::string, bool> log_param_scale,
214 unsigned int n_training_samples_in,
225 std::map<std::string, bool> log_param_scale,
227 unsigned int n_training_samples_in,
283 #endif // LIBMESH_RB_CONSTRUCTION_BASE_H std::string name(const ElemQuality q)
numeric_index_type get_first_local_training_index() const
bool training_parameters_initialized
Manages multiples systems of equations.
void broadcast_parameters(unsigned int proc_id)
static void generate_training_parameters_deterministic(const Parallel::Communicator &communicator, std::map< std::string, bool > log_param_scale, std::map< std::string, std::unique_ptr< NumericVector< Number >>> &training_parameters_in, unsigned int n_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, bool serial_training_set=false)
void set_quiet_mode(bool quiet_mode_in)
static void get_global_max_error_pair(const Parallel::Communicator &communicator, std::pair< numeric_index_type, Real > &error_pair)
std::unique_ptr< NumericVector< Number > > inner_product_storage_vector
RBConstructionBase< Base > sys_type
void set_deterministic_training_parameter_repeats(unsigned int repeats)
std::map< std::string, std::unique_ptr< NumericVector< Number > > > training_parameters
dof_id_type numeric_index_type
void set_params_from_training_set(unsigned int index)
RBConstructionBase(EquationSystems &es, const std::string &name, const unsigned int number)
numeric_index_type get_last_local_training_index() const
numeric_index_type get_local_n_training_samples() const
virtual ~RBConstructionBase()
unsigned int get_deterministic_training_parameter_repeats() const
numeric_index_type get_n_training_samples() const
Extends EigenSystem to allow certain DOFs to be condensed out.
static void generate_training_parameters_random(const Parallel::Communicator &communicator, std::map< std::string, bool > log_param_scale, std::map< std::string, std::unique_ptr< NumericVector< Number >>> &training_parameters_in, unsigned int n_training_samples_in, const RBParameters &min_parameters, const RBParameters &max_parameters, int training_parameters_random_seed=-1, bool serial_training_set=false)
void set_deterministic_training_parameter_name(const std::string &name)
virtual void set_params_from_training_set_and_broadcast(unsigned int index)
void set_training_random_seed(unsigned int seed)
RBParameters get_params_from_training_set(unsigned int index)
const std::string & get_deterministic_training_parameter_name() const
virtual void initialize_training_parameters(const RBParameters &mu_min, const RBParameters &mu_max, unsigned int n_training_parameters, std::map< std::string, bool > log_param_scale, bool deterministic=true)
int training_parameters_random_seed
virtual void load_training_set(std::map< std::string, std::vector< Number >> &new_training_set)