libMesh::DenseMatrix< T > Class Template Reference

A matrix object used for finite element assembly and numerics. More...

#include <dense_matrix.h>

Inheritance diagram for libMesh::DenseMatrix< T >:

Public Member Functions

 DenseMatrix (const unsigned int new_m=0, const unsigned int new_n=0)
 
 DenseMatrix (DenseMatrix &&)=default
 
 DenseMatrix (const DenseMatrix &)=default
 
DenseMatrixoperator= (const DenseMatrix &)=default
 
DenseMatrixoperator= (DenseMatrix &&)=default
 
virtual ~DenseMatrix ()=default
 
virtual void zero () override
 
operator() (const unsigned int i, const unsigned int j) const
 
T & operator() (const unsigned int i, const unsigned int j)
 
virtual T el (const unsigned int i, const unsigned int j) const override
 
virtual T & el (const unsigned int i, const unsigned int j) override
 
virtual void left_multiply (const DenseMatrixBase< T > &M2) override
 
template<typename T2 >
void left_multiply (const DenseMatrixBase< T2 > &M2)
 
virtual void right_multiply (const DenseMatrixBase< T > &M2) override
 
template<typename T2 >
void right_multiply (const DenseMatrixBase< T2 > &M2)
 
void vector_mult (DenseVector< T > &dest, const DenseVector< T > &arg) const
 
template<typename T2 >
void vector_mult (DenseVector< typename CompareTypes< T, T2 >::supertype > &dest, const DenseVector< T2 > &arg) const
 
void vector_mult_transpose (DenseVector< T > &dest, const DenseVector< T > &arg) const
 
template<typename T2 >
void vector_mult_transpose (DenseVector< typename CompareTypes< T, T2 >::supertype > &dest, const DenseVector< T2 > &arg) const
 
void vector_mult_add (DenseVector< T > &dest, const T factor, const DenseVector< T > &arg) const
 
template<typename T2 , typename T3 >
void vector_mult_add (DenseVector< typename CompareTypes< T, typename CompareTypes< T2, T3 >::supertype >::supertype > &dest, const T2 factor, const DenseVector< T3 > &arg) const
 
void get_principal_submatrix (unsigned int sub_m, unsigned int sub_n, DenseMatrix< T > &dest) const
 
void get_principal_submatrix (unsigned int sub_m, DenseMatrix< T > &dest) const
 
void outer_product (const DenseVector< T > &a, const DenseVector< T > &b)
 
template<typename T2 >
DenseMatrix< T > & operator= (const DenseMatrix< T2 > &other_matrix)
 
void swap (DenseMatrix< T > &other_matrix)
 
void resize (const unsigned int new_m, const unsigned int new_n)
 
void scale (const T factor)
 
void scale_column (const unsigned int col, const T factor)
 
DenseMatrix< T > & operator*= (const T factor)
 
template<typename T2 , typename T3 >
boostcopy::enable_if_c< ScalarTraits< T2 >::value, void >::type add (const T2 factor, const DenseMatrix< T3 > &mat)
 
bool operator== (const DenseMatrix< T > &mat) const
 
bool operator!= (const DenseMatrix< T > &mat) const
 
DenseMatrix< T > & operator+= (const DenseMatrix< T > &mat)
 
DenseMatrix< T > & operator-= (const DenseMatrix< T > &mat)
 
Real min () const
 
Real max () const
 
Real l1_norm () const
 
Real linfty_norm () const
 
void left_multiply_transpose (const DenseMatrix< T > &A)
 
template<typename T2 >
void left_multiply_transpose (const DenseMatrix< T2 > &A)
 
void right_multiply_transpose (const DenseMatrix< T > &A)
 
template<typename T2 >
void right_multiply_transpose (const DenseMatrix< T2 > &A)
 
transpose (const unsigned int i, const unsigned int j) const
 
void get_transpose (DenseMatrix< T > &dest) const
 
std::vector< T > & get_values ()
 
const std::vector< T > & get_values () const
 
void condense (const unsigned int i, const unsigned int j, const T val, DenseVector< T > &rhs)
 
void lu_solve (const DenseVector< T > &b, DenseVector< T > &x)
 
template<typename T2 >
void cholesky_solve (const DenseVector< T2 > &b, DenseVector< T2 > &x)
 
void svd (DenseVector< Real > &sigma)
 
void svd (DenseVector< Real > &sigma, DenseMatrix< Number > &U, DenseMatrix< Number > &VT)
 
void svd_solve (const DenseVector< T > &rhs, DenseVector< T > &x, Real rcond=std::numeric_limits< Real >::epsilon()) const
 
void evd (DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag)
 
void evd_left (DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > &VL)
 
void evd_right (DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > &VR)
 
void evd_left_and_right (DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > &VL, DenseMatrix< T > &VR)
 
det ()
 
unsigned int m () const
 
unsigned int n () const
 
void print (std::ostream &os=libMesh::out) const
 
void print_scientific (std::ostream &os, unsigned precision=8) const
 
template<typename T2 , typename T3 >
boostcopy::enable_if_c< ScalarTraits< T2 >::value, void >::type add (const T2 factor, const DenseMatrixBase< T3 > &mat)
 

Public Attributes

bool use_blas_lapack
 

Protected Member Functions

void condense (const unsigned int i, const unsigned int j, const T val, DenseVectorBase< T > &rhs)
 

Static Protected Member Functions

static void multiply (DenseMatrixBase< T > &M1, const DenseMatrixBase< T > &M2, const DenseMatrixBase< T > &M3)
 

Protected Attributes

unsigned int _m
 
unsigned int _n
 

Private Types

enum  DecompositionType { LU =0, CHOLESKY =1, LU_BLAS_LAPACK, NONE }
 
enum  _BLAS_Multiply_Flag { LEFT_MULTIPLY = 0, RIGHT_MULTIPLY, LEFT_MULTIPLY_TRANSPOSE, RIGHT_MULTIPLY_TRANSPOSE }
 
typedef PetscBLASInt pivot_index_t
 
typedef int pivot_index_t
 

Private Member Functions

void _lu_decompose ()
 
void _lu_back_substitute (const DenseVector< T > &b, DenseVector< T > &x) const
 
void _cholesky_decompose ()
 
template<typename T2 >
void _cholesky_back_substitute (const DenseVector< T2 > &b, DenseVector< T2 > &x) const
 
void _multiply_blas (const DenseMatrixBase< T > &other, _BLAS_Multiply_Flag flag)
 
void _lu_decompose_lapack ()
 
void _svd_lapack (DenseVector< Real > &sigma)
 
void _svd_lapack (DenseVector< Real > &sigma, DenseMatrix< Number > &U, DenseMatrix< Number > &VT)
 
void _svd_solve_lapack (const DenseVector< T > &rhs, DenseVector< T > &x, Real rcond) const
 
void _svd_helper (char JOBU, char JOBVT, std::vector< Real > &sigma_val, std::vector< Number > &U_val, std::vector< Number > &VT_val)
 
void _evd_lapack (DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > *VL=nullptr, DenseMatrix< T > *VR=nullptr)
 
void _lu_back_substitute_lapack (const DenseVector< T > &b, DenseVector< T > &x)
 
void _matvec_blas (T alpha, T beta, DenseVector< T > &dest, const DenseVector< T > &arg, bool trans=false) const
 

Private Attributes

std::vector< T > _val
 
DecompositionType _decomposition_type
 
std::vector< pivot_index_t_pivots
 

Detailed Description

template<typename T>
class libMesh::DenseMatrix< T >

A matrix object used for finite element assembly and numerics.

Defines a dense matrix for use in Finite Element-type computations. Useful for storing element stiffness matrices before summation into a global matrix. All overridden virtual functions are documented in dense_matrix_base.h.

Author
Benjamin S. Kirk
Date
2002

Definition at line 54 of file dense_matrix.h.

Member Typedef Documentation

◆ pivot_index_t [1/2]

template<typename T>
typedef PetscBLASInt libMesh::DenseMatrix< T >::pivot_index_t
private

Array used to store pivot indices. May be used by whatever factorization is currently active, clients of the class should not rely on it for any reason.

Definition at line 668 of file dense_matrix.h.

◆ pivot_index_t [2/2]

template<typename T>
typedef int libMesh::DenseMatrix< T >::pivot_index_t
private

Definition at line 670 of file dense_matrix.h.

Member Enumeration Documentation

◆ _BLAS_Multiply_Flag

template<typename T>
enum libMesh::DenseMatrix::_BLAS_Multiply_Flag
private

Enumeration used to determine the behavior of the _multiply_blas function.

Enumerator
LEFT_MULTIPLY 
RIGHT_MULTIPLY 
LEFT_MULTIPLY_TRANSPOSE 
RIGHT_MULTIPLY_TRANSPOSE 

Definition at line 588 of file dense_matrix.h.

◆ DecompositionType

template<typename T>
enum libMesh::DenseMatrix::DecompositionType
private

The decomposition schemes above change the entries of the matrix A. It is therefore an error to call A.lu_solve() and subsequently call A.cholesky_solve() since the result will probably not match any desired outcome. This typedef keeps track of which decomposition has been called for this matrix.

Enumerator
LU 
CHOLESKY 
LU_BLAS_LAPACK 
NONE 

Definition at line 576 of file dense_matrix.h.

Constructor & Destructor Documentation

◆ DenseMatrix() [1/3]

template<typename T >
libMesh::DenseMatrix< T >::DenseMatrix ( const unsigned int  new_m = 0,
const unsigned int  new_n = 0 
)
inline

Constructor. Creates a dense matrix of dimension m by n.

Definition at line 744 of file dense_matrix.h.

745  :
746  DenseMatrixBase<T>(new_m,new_n),
747 #if defined(LIBMESH_HAVE_PETSC) && defined(LIBMESH_USE_REAL_NUMBERS) && defined(LIBMESH_DEFAULT_DOUBLE_PRECISION)
748  use_blas_lapack(true),
749 #else
750  use_blas_lapack(false),
751 #endif
752  _val(),
754 {
755  this->resize(new_m,new_n);
756 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
std::vector< T > _val
Definition: dense_matrix.h:532

◆ DenseMatrix() [2/3]

template<typename T>
libMesh::DenseMatrix< T >::DenseMatrix ( DenseMatrix< T > &&  )
default

The 5 special functions can be defaulted for this class, as it does not manage any memory itself.

◆ DenseMatrix() [3/3]

template<typename T>
libMesh::DenseMatrix< T >::DenseMatrix ( const DenseMatrix< T > &  )
default

◆ ~DenseMatrix()

template<typename T>
virtual libMesh::DenseMatrix< T >::~DenseMatrix ( )
virtualdefault

Member Function Documentation

◆ _cholesky_back_substitute()

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::_cholesky_back_substitute ( const DenseVector< T2 > &  b,
DenseVector< T2 > &  x 
) const
private

Solves the equation Ax=b for the unknown value x and rhs b based on the Cholesky factorization of A.

Note
This method may be used when A is real-valued and b and x are complex-valued.

Definition at line 1007 of file dense_matrix_impl.h.

1009 {
1010  // Shorthand notation for number of rows and columns.
1011  const unsigned int
1012  n_rows = this->m(),
1013  n_cols = this->n();
1014 
1015  // Just to be really sure...
1016  libmesh_assert_equal_to (n_rows, n_cols);
1017 
1018  // A convenient reference to *this
1019  const DenseMatrix<T> & A = *this;
1020 
1021  // Now compute the solution to Ax =b using the factorization.
1022  x.resize(n_rows);
1023 
1024  // Solve for Ly=b
1025  for (unsigned int i=0; i<n_cols; ++i)
1026  {
1027  T2 temp = b(i);
1028 
1029  for (unsigned int k=0; k<i; ++k)
1030  temp -= A(i,k)*x(k);
1031 
1032  x(i) = temp / A(i,i);
1033  }
1034 
1035  // Solve for L^T x = y
1036  for (unsigned int i=0; i<n_cols; ++i)
1037  {
1038  const unsigned int ib = (n_cols-1)-i;
1039 
1040  for (unsigned int k=(ib+1); k<n_cols; ++k)
1041  x(ib) -= A(k,ib) * x(k);
1042 
1043  x(ib) /= A(ib,ib);
1044  }
1045 }
unsigned int m() const
static PetscErrorCode Mat * A
unsigned int n() const

◆ _cholesky_decompose()

template<typename T >
void libMesh::DenseMatrix< T >::_cholesky_decompose ( )
private

Decomposes a symmetric positive definite matrix into a product of two lower triangular matrices according to A = LL^T.

Note
This program generates an error if the matrix is not SPD.

Definition at line 961 of file dense_matrix_impl.h.

962 {
963  // If we called this function, there better not be any
964  // previous decomposition of the matrix.
965  libmesh_assert_equal_to (this->_decomposition_type, NONE);
966 
967  // Shorthand notation for number of rows and columns.
968  const unsigned int
969  n_rows = this->m(),
970  n_cols = this->n();
971 
972  // Just to be really sure...
973  libmesh_assert_equal_to (n_rows, n_cols);
974 
975  // A convenient reference to *this
976  DenseMatrix<T> & A = *this;
977 
978  for (unsigned int i=0; i<n_rows; ++i)
979  {
980  for (unsigned int j=i; j<n_cols; ++j)
981  {
982  for (unsigned int k=0; k<i; ++k)
983  A(i,j) -= A(i,k) * A(j,k);
984 
985  if (i == j)
986  {
987 #ifndef LIBMESH_USE_COMPLEX_NUMBERS
988  if (A(i,j) <= 0.0)
989  libmesh_error_msg("Error! Can only use Cholesky decomposition with symmetric positive definite matrices.");
990 #endif
991 
992  A(i,i) = std::sqrt(A(i,j));
993  }
994  else
995  A(j,i) = A(i,j) / A(i,i);
996  }
997  }
998 
999  // Set the flag for CHOLESKY decomposition
1000  this->_decomposition_type = CHOLESKY;
1001 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
unsigned int m() const
static PetscErrorCode Mat * A
unsigned int n() const

◆ _evd_lapack()

template<typename T>
template void libMesh::DenseMatrix< T >::_evd_lapack ( DenseVector< T > &  lambda_real,
DenseVector< T > &  lambda_imag,
DenseMatrix< T > *  VL = nullptr,
DenseMatrix< T > *  VR = nullptr 
)
private

Computes the eigenvalues of the matrix using the Lapack routine "DGEEV". If VR and/or VL are not nullptr, then the matrix of right and/or left eigenvectors is also computed and returned by this function.

[ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 703 of file dense_matrix_blas_lapack.C.

707 {
708  // This algorithm only works for square matrices, so verify this up front.
709  if (this->m() != this->n())
710  libmesh_error_msg("Can only compute eigen-decompositions for square matrices.");
711 
712  // If the user requests left or right eigenvectors, we have to make
713  // sure and pass the transpose of this matrix to Lapack, otherwise
714  // it will compute the inverse transpose of what we are
715  // after... since we know the matrix is square, we can just swap
716  // entries in place. If the user does not request eigenvectors, we
717  // can skip this extra step, since the eigenvalues for A and A^T are
718  // the same.
719  if (VL || VR)
720  {
721  for (auto i : IntRange<int>(0, this->_m))
722  for (auto j : IntRange<int>(0, i))
723  std::swap((*this)(i,j), (*this)(j,i));
724  }
725 
726  // The calling sequence for dgeev is:
727  // DGEEV (character JOBVL,
728  // character JOBVR,
729  // integer N,
730  // double precision, dimension( lda, * ) A,
731  // integer LDA,
732  // double precision, dimension( * ) WR,
733  // double precision, dimension( * ) WI,
734  // double precision, dimension( ldvl, * ) VL,
735  // integer LDVL,
736  // double precision, dimension( ldvr, * ) VR,
737  // integer LDVR,
738  // double precision, dimension( * ) WORK,
739  // integer LWORK,
740  // integer INFO)
741 
742  // JOBVL (input)
743  // = 'N': left eigenvectors of A are not computed;
744  // = 'V': left eigenvectors of A are computed.
745  char JOBVL = VL ? 'V' : 'N';
746 
747  // JOBVR (input)
748  // = 'N': right eigenvectors of A are not computed;
749  // = 'V': right eigenvectors of A are computed.
750  char JOBVR = VR ? 'V' : 'N';
751 
752  // N (input)
753  // The number of rows/cols of the matrix A. N >= 0.
754  PetscBLASInt N = this->m();
755 
756  // A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
757  // On entry, the N-by-N matrix A.
758  // On exit, A has been overwritten.
759 
760  // LDA (input)
761  // The leading dimension of the array A. LDA >= max(1,N).
762  PetscBLASInt LDA = N;
763 
764  // WR (output) double precision array, dimension (N)
765  // WI (output) double precision array, dimension (N)
766  // WR and WI contain the real and imaginary parts,
767  // respectively, of the computed eigenvalues. Complex
768  // conjugate pairs of eigenvalues appear consecutively
769  // with the eigenvalue having the positive imaginary part
770  // first.
771  lambda_real.resize(N);
772  lambda_imag.resize(N);
773 
774  // VL (output) double precision array, dimension (LDVL,N)
775  // If JOBVL = 'V', the left eigenvectors u(j) are stored one
776  // after another in the columns of VL, in the same order
777  // as their eigenvalues.
778  // If JOBVL = 'N', VL is not referenced.
779  // If the j-th eigenvalue is real, then u(j) = VL(:,j),
780  // the j-th column of VL.
781  // If the j-th and (j+1)-st eigenvalues form a complex
782  // conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
783  // u(j+1) = VL(:,j) - i*VL(:,j+1).
784  // Will be set below if needed.
785 
786  // LDVL (input)
787  // The leading dimension of the array VL. LDVL >= 1; if
788  // JOBVL = 'V', LDVL >= N.
789  PetscBLASInt LDVL = VL ? N : 1;
790 
791  // VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
792  // If JOBVR = 'V', the right eigenvectors v(j) are stored one
793  // after another in the columns of VR, in the same order
794  // as their eigenvalues.
795  // If JOBVR = 'N', VR is not referenced.
796  // If the j-th eigenvalue is real, then v(j) = VR(:,j),
797  // the j-th column of VR.
798  // If the j-th and (j+1)-st eigenvalues form a complex
799  // conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
800  // v(j+1) = VR(:,j) - i*VR(:,j+1).
801  // Will be set below if needed.
802 
803  // LDVR (input)
804  // The leading dimension of the array VR. LDVR >= 1; if
805  // JOBVR = 'V', LDVR >= N.
806  PetscBLASInt LDVR = VR ? N : 1;
807 
808  // WORK (workspace/output) double precision array, dimension (MAX(1,LWORK))
809  // On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
810  //
811  // LWORK (input)
812  // The dimension of the array WORK. LWORK >= max(1,3*N), and
813  // if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
814  // performance, LWORK must generally be larger.
815  //
816  // If LWORK = -1, then a workspace query is assumed; the routine
817  // only calculates the optimal size of the WORK array, returns
818  // this value as the first entry of the WORK array, and no error
819  // message related to LWORK is issued by XERBLA.
820  PetscBLASInt LWORK = (VR || VL) ? 4*N : 3*N;
821  std::vector<T> WORK(LWORK);
822 
823  // INFO (output)
824  // = 0: successful exit
825  // < 0: if INFO = -i, the i-th argument had an illegal value.
826  // > 0: if INFO = i, the QR algorithm failed to compute all the
827  // eigenvalues, and no eigenvectors or condition numbers
828  // have been computed; elements 1:ILO-1 and i+1:N of WR
829  // and WI contain eigenvalues which have converged.
830  PetscBLASInt INFO = 0;
831 
832  // Get references to raw data
833  std::vector<T> & lambda_real_val = lambda_real.get_values();
834  std::vector<T> & lambda_imag_val = lambda_imag.get_values();
835 
836  // Set up eigenvector storage if necessary.
837  T * VR_ptr = nullptr;
838  if (VR)
839  {
840  VR->resize(N, N);
841  VR_ptr = VR->get_values().data();
842  }
843 
844  T * VL_ptr = nullptr;
845  if (VL)
846  {
847  VL->resize(N, N);
848  VL_ptr = VL->get_values().data();
849  }
850 
851  // Ready to call the Lapack routine through PETSc's interface
852  LAPACKgeev_(&JOBVL,
853  &JOBVR,
854  &N,
855  _val.data(),
856  &LDA,
857  lambda_real_val.data(),
858  lambda_imag_val.data(),
859  VL_ptr,
860  &LDVL,
861  VR_ptr,
862  &LDVR,
863  WORK.data(),
864  &LWORK,
865  &INFO);
866 
867  // Check return value for errors
868  if (INFO != 0)
869  libmesh_error_msg("INFO=" << INFO << ", Error during Lapack eigenvalue calculation!");
870 
871  // If the user requested either right or left eigenvectors, LAPACK
872  // has now computed the transpose of the desired matrix, i.e. V^T
873  // instead of V. We could leave this up to user code to handle, but
874  // rather than risking getting very unexpected results, we'll just
875  // transpose it in place before handing it back.
876  if (VR)
877  {
878  for (auto i : IntRange<int>(0, N))
879  for (auto j : IntRange<int>(0, i))
880  std::swap((*VR)(i,j), (*VR)(j,i));
881  }
882 
883  if (VL)
884  {
885  for (auto i : IntRange<int>(0, N))
886  for (auto j : IntRange<int>(0, i))
887  std::swap((*VL)(i,j), (*VL)(j,i));
888  }
889 }
unsigned int m() const
void swap(Iterator &lhs, Iterator &rhs)
std::vector< T > _val
Definition: dense_matrix.h:532
unsigned int n() const

◆ _lu_back_substitute()

template<typename T>
void libMesh::DenseMatrix< T >::_lu_back_substitute ( const DenseVector< T > &  b,
DenseVector< T > &  x 
) const
private

Solves the system Ax=b through back substitution. This function is private since it is only called as part of the implementation of the lu_solve(...) function.

Definition at line 666 of file dense_matrix_impl.h.

668 {
669  const unsigned int
670  n_cols = this->n();
671 
672  libmesh_assert_equal_to (this->m(), n_cols);
673  libmesh_assert_equal_to (this->m(), b.size());
674 
675  x.resize (n_cols);
676 
677  // A convenient reference to *this
678  const DenseMatrix<T> & A = *this;
679 
680  // Temporary vector storage. We use this instead of
681  // modifying the RHS.
682  DenseVector<T> z = b;
683 
684  // Lower-triangular "top to bottom" solve step, taking into account pivots
685  for (unsigned int i=0; i<n_cols; ++i)
686  {
687  // Swap
688  if (_pivots[i] != static_cast<pivot_index_t>(i))
689  std::swap( z(i), z(_pivots[i]) );
690 
691  x(i) = z(i);
692 
693  for (unsigned int j=0; j<i; ++j)
694  x(i) -= A(i,j)*x(j);
695 
696  x(i) /= A(i,i);
697  }
698 
699  // Upper-triangular "bottom to top" solve step
700  const unsigned int last_row = n_cols-1;
701 
702  for (int i=last_row; i>=0; --i)
703  {
704  for (int j=i+1; j<static_cast<int>(n_cols); ++j)
705  x(i) -= A(i,j)*x(j);
706  }
707 }
unsigned int m() const
static PetscErrorCode Mat * A
void swap(Iterator &lhs, Iterator &rhs)
unsigned int n() const
std::vector< pivot_index_t > _pivots
Definition: dense_matrix.h:672

◆ _lu_back_substitute_lapack()

template<typename T>
template void libMesh::DenseMatrix< T >::_lu_back_substitute_lapack ( const DenseVector< T > &  b,
DenseVector< T > &  x 
)
private

Companion function to _lu_decompose_lapack(). Do not use directly, called through the public lu_solve() interface. This function is logically const in that it does not modify the matrix, but since we are just calling LAPACK routines, it's less const_cast hassle to just declare the function non-const. [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 911 of file dense_matrix_blas_lapack.C.

913 {
914  // The calling sequence for getrs is:
915  // dgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
916 
917  // trans (input)
918  // 'n' for no transpose, 't' for transpose
919  char TRANS[] = "t";
920 
921  // N (input)
922  // The order of the matrix A. N >= 0.
923  PetscBLASInt N = this->m();
924 
925 
926  // NRHS (input)
927  // The number of right hand sides, i.e., the number of columns
928  // of the matrix B. NRHS >= 0.
929  PetscBLASInt NRHS = 1;
930 
931  // A (input) double precision array, dimension (LDA,N)
932  // The factors L and U from the factorization A = P*L*U
933  // as computed by dgetrf.
934 
935  // LDA (input)
936  // The leading dimension of the array A. LDA >= max(1,N).
937  PetscBLASInt LDA = N;
938 
939  // ipiv (input) int array, dimension (N)
940  // The pivot indices from DGETRF; for 1<=i<=N, row i of the
941  // matrix was interchanged with row IPIV(i).
942  // Here, we pass _pivots.data() which was computed in _lu_decompose_lapack
943 
944  // B (input/output) double precision array, dimension (LDB,NRHS)
945  // On entry, the right hand side matrix B.
946  // On exit, the solution matrix X.
947  // Here, we pass a copy of the rhs vector's data array in x, so that the
948  // passed right-hand side b is unmodified. I don't see a way around this
949  // copy if we want to maintain an unmodified rhs in LibMesh.
950  x = b;
951  std::vector<T> & x_vec = x.get_values();
952 
953  // We can avoid the copy if we don't care about overwriting the RHS: just
954  // pass b to the Lapack routine and then swap with x before exiting
955  // std::vector<T> & x_vec = b.get_values();
956 
957  // LDB (input)
958  // The leading dimension of the array B. LDB >= max(1,N).
959  PetscBLASInt LDB = N;
960 
961  // INFO (output)
962  // = 0: successful exit
963  // < 0: if INFO = -i, the i-th argument had an illegal value
964  PetscBLASInt INFO = 0;
965 
966  // Finally, ready to call the Lapack getrs function
967  LAPACKgetrs_(TRANS, &N, &NRHS, _val.data(), &LDA, _pivots.data(), x_vec.data(), &LDB, &INFO);
968 
969  // Check return value for errors
970  if (INFO != 0)
971  libmesh_error_msg("INFO=" << INFO << ", Error during Lapack LU solve!");
972 
973  // Don't do this if you already made a copy of b above
974  // Swap b and x. The solution will then be in x, and whatever was originally
975  // in x, maybe garbage, maybe nothing, will be in b.
976  // FIXME: Rewrite the LU and Cholesky solves to just take one input, and overwrite
977  // the input. This *should* make user code simpler, as they don't have to create
978  // an extra vector just to pass it in to the solve function!
979  // b.swap(x);
980 }
unsigned int m() const
std::vector< T > _val
Definition: dense_matrix.h:532
std::vector< pivot_index_t > _pivots
Definition: dense_matrix.h:672

◆ _lu_decompose()

template<typename T >
void libMesh::DenseMatrix< T >::_lu_decompose ( )
private

Form the LU decomposition of the matrix. This function is private since it is only called as part of the implementation of the lu_solve(...) function.

Definition at line 717 of file dense_matrix_impl.h.

718 {
719  // If this function was called, there better not be any
720  // previous decomposition of the matrix.
721  libmesh_assert_equal_to (this->_decomposition_type, NONE);
722 
723  // Get the matrix size and make sure it is square
724  const unsigned int
725  n_rows = this->m();
726 
727  // A convenient reference to *this
728  DenseMatrix<T> & A = *this;
729 
730  _pivots.resize(n_rows);
731 
732  for (unsigned int i=0; i<n_rows; ++i)
733  {
734  // Find the pivot row by searching down the i'th column
735  _pivots[i] = i;
736 
737  // std::abs(complex) must return a Real!
738  Real the_max = std::abs( A(i,i) );
739  for (unsigned int j=i+1; j<n_rows; ++j)
740  {
741  Real candidate_max = std::abs( A(j,i) );
742  if (the_max < candidate_max)
743  {
744  the_max = candidate_max;
745  _pivots[i] = j;
746  }
747  }
748 
749  // libMesh::out << "the_max=" << the_max << " found at row " << _pivots[i] << std::endl;
750 
751  // If the max was found in a different row, interchange rows.
752  // Here we interchange the *entire* row, in Gaussian elimination
753  // you would only interchange the subrows A(i,j) and A(p(i),j), for j>i
754  if (_pivots[i] != static_cast<pivot_index_t>(i))
755  {
756  for (unsigned int j=0; j<n_rows; ++j)
757  std::swap( A(i,j), A(_pivots[i], j) );
758  }
759 
760 
761  // If the max abs entry found is zero, the matrix is singular
762  if (A(i,i) == libMesh::zero)
763  libmesh_error_msg("Matrix A is singular!");
764 
765  // Scale upper triangle entries of row i by the diagonal entry
766  // Note: don't scale the diagonal entry itself!
767  const T diag_inv = 1. / A(i,i);
768  for (unsigned int j=i+1; j<n_rows; ++j)
769  A(i,j) *= diag_inv;
770 
771  // Update the remaining sub-matrix A[i+1:m][i+1:m]
772  // by subtracting off (the diagonal-scaled)
773  // upper-triangular part of row i, scaled by the
774  // i'th column entry of each row. In terms of
775  // row operations, this is:
776  // for each r > i
777  // SubRow(r) = SubRow(r) - A(r,i)*SubRow(i)
778  //
779  // If we were scaling the i'th column as well, like
780  // in Gaussian elimination, this would 'zero' the
781  // entry in the i'th column.
782  for (unsigned int row=i+1; row<n_rows; ++row)
783  for (unsigned int col=i+1; col<n_rows; ++col)
784  A(row,col) -= A(row,i) * A(i,col);
785 
786  } // end i loop
787 
788  // Set the flag for LU decomposition
789  this->_decomposition_type = LU;
790 }
double abs(double a)
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
unsigned int m() const
const Number zero
Definition: libmesh.h:239
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
static PetscErrorCode Mat * A
void swap(Iterator &lhs, Iterator &rhs)
std::vector< pivot_index_t > _pivots
Definition: dense_matrix.h:672

◆ _lu_decompose_lapack()

template<typename T >
template void libMesh::DenseMatrix< T >::_lu_decompose_lapack ( )
private

Computes an LU factorization of the matrix using the Lapack routine "getrf". This routine should only be used by the "use_blas_lapack" branch of the lu_solve() function. After the call to this function, the matrix is replaced by its factorized version, and the DecompositionType is set to LU_BLAS_LAPACK. [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 207 of file dense_matrix_blas_lapack.C.

208 {
209  // If this function was called, there better not be any
210  // previous decomposition of the matrix.
211  libmesh_assert_equal_to (this->_decomposition_type, NONE);
212 
213  // The calling sequence for dgetrf is:
214  // dgetrf(M, N, A, lda, ipiv, info)
215 
216  // M (input)
217  // The number of rows of the matrix A. M >= 0.
218  // In C/C++, pass the number of *cols* of A
219  PetscBLASInt M = this->n();
220 
221  // N (input)
222  // The number of columns of the matrix A. N >= 0.
223  // In C/C++, pass the number of *rows* of A
224  PetscBLASInt N = this->m();
225 
226  // A (input/output) double precision array, dimension (LDA,N)
227  // On entry, the M-by-N matrix to be factored.
228  // On exit, the factors L and U from the factorization
229  // A = P*L*U; the unit diagonal elements of L are not stored.
230 
231  // LDA (input)
232  // The leading dimension of the array A. LDA >= max(1,M).
233  PetscBLASInt LDA = M;
234 
235  // ipiv (output) integer array, dimension (min(m,n))
236  // The pivot indices; for 1 <= i <= min(m,n), row i of the
237  // matrix was interchanged with row IPIV(i).
238  // Here, we pass _pivots.data(), a private class member used to store pivots
239  this->_pivots.resize( std::min(M,N) );
240 
241  // info (output)
242  // = 0: successful exit
243  // < 0: if INFO = -i, the i-th argument had an illegal value
244  // > 0: if INFO = i, U(i,i) is exactly zero. The factorization
245  // has been completed, but the factor U is exactly
246  // singular, and division by zero will occur if it is used
247  // to solve a system of equations.
248  PetscBLASInt INFO = 0;
249 
250  // Ready to call the actual factorization routine through PETSc's interface
251  LAPACKgetrf_(&M, &N, this->_val.data(), &LDA, _pivots.data(), &INFO);
252 
253  // Check return value for errors
254  if (INFO != 0)
255  libmesh_error_msg("INFO=" << INFO << ", Error during Lapack LU factorization!");
256 
257  // Set the flag for LU decomposition
259 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
unsigned int m() const
std::vector< T > _val
Definition: dense_matrix.h:532
unsigned int n() const
std::vector< pivot_index_t > _pivots
Definition: dense_matrix.h:672
long double min(long double a, double b)

◆ _matvec_blas()

template<typename T>
template void libMesh::DenseMatrix< T >::_matvec_blas ( alpha,
beta,
DenseVector< T > &  dest,
const DenseVector< T > &  arg,
bool  trans = false 
) const
private

Uses the BLAS GEMV function (through PETSc) to compute

dest := alpha*A*arg + beta*dest

where alpha and beta are scalars, A is this matrix, and arg and dest are input vectors of appropriate size. If trans is true, the transpose matvec is computed instead. By default, trans==false.

[ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 1000 of file dense_matrix_blas_lapack.C.

1005 {
1006  // Ensure that dest and arg sizes are compatible
1007  if (!trans)
1008  {
1009  // dest ~ A * arg
1010  // (mx1) (mxn) * (nx1)
1011  if ((dest.size() != this->m()) || (arg.size() != this->n()))
1012  libmesh_error_msg("Improper input argument sizes!");
1013  }
1014 
1015  else // trans == true
1016  {
1017  // Ensure that dest and arg are proper size
1018  // dest ~ A^T * arg
1019  // (nx1) (nxm) * (mx1)
1020  if ((dest.size() != this->n()) || (arg.size() != this->m()))
1021  libmesh_error_msg("Improper input argument sizes!");
1022  }
1023 
1024  // Calling sequence for dgemv:
1025  //
1026  // dgemv(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
1027 
1028  // TRANS (input)
1029  // 't' for transpose, 'n' for non-transpose multiply
1030  // We store everything in row-major order, so pass the transpose flag for
1031  // non-transposed matvecs and the 'n' flag for transposed matvecs
1032  char TRANS[] = "t";
1033  if (trans)
1034  TRANS[0] = 'n';
1035 
1036  // M (input)
1037  // On entry, M specifies the number of rows of the matrix A.
1038  // In C/C++, pass the number of *cols* of A
1039  PetscBLASInt M = this->n();
1040 
1041  // N (input)
1042  // On entry, N specifies the number of columns of the matrix A.
1043  // In C/C++, pass the number of *rows* of A
1044  PetscBLASInt N = this->m();
1045 
1046  // ALPHA (input)
1047  // The scalar constant passed to this function
1048 
1049  // A (input) double precision array of DIMENSION ( LDA, n ).
1050  // Before entry, the leading m by n part of the array A must
1051  // contain the matrix of coefficients.
1052  // The matrix, *this. Note that _matvec_blas is called from
1053  // a const function, vector_mult(), and so we have made this function const
1054  // as well. Since BLAS knows nothing about const, we have to cast it away
1055  // now.
1056  DenseMatrix<T> & a_ref = const_cast<DenseMatrix<T> &> ( *this );
1057  std::vector<T> & a = a_ref.get_values();
1058 
1059  // LDA (input)
1060  // On entry, LDA specifies the first dimension of A as declared
1061  // in the calling (sub) program. LDA must be at least
1062  // max( 1, m ).
1063  PetscBLASInt LDA = M;
1064 
1065  // X (input) double precision array of DIMENSION at least
1066  // ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
1067  // and at least
1068  // ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
1069  // Before entry, the incremented array X must contain the
1070  // vector x.
1071  // Here, we must cast away the const-ness of "arg" since BLAS knows
1072  // nothing about const
1073  DenseVector<T> & x_ref = const_cast<DenseVector<T> &> ( arg );
1074  std::vector<T> & x = x_ref.get_values();
1075 
1076  // INCX (input)
1077  // On entry, INCX specifies the increment for the elements of
1078  // X. INCX must not be zero.
1079  PetscBLASInt INCX = 1;
1080 
1081  // BETA (input)
1082  // On entry, BETA specifies the scalar beta. When BETA is
1083  // supplied as zero then Y need not be set on input.
1084  // The second scalar constant passed to this function
1085 
1086  // Y (input) double precision array of DIMENSION at least
1087  // ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
1088  // and at least
1089  // ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
1090  // Before entry with BETA non-zero, the incremented array Y
1091  // must contain the vector y. On exit, Y is overwritten by the
1092  // updated vector y.
1093  // The input vector "dest"
1094  std::vector<T> & y = dest.get_values();
1095 
1096  // INCY (input)
1097  // On entry, INCY specifies the increment for the elements of
1098  // Y. INCY must not be zero.
1099  PetscBLASInt INCY = 1;
1100 
1101  // Finally, ready to call the BLAS function
1102  BLASgemv_(TRANS, &M, &N, &alpha, a.data(), &LDA, x.data(), &INCX, &beta, y.data(), &INCY);
1103 }
unsigned int m() const
unsigned int n() const

◆ _multiply_blas()

template<typename T>
template void libMesh::DenseMatrix< T >::_multiply_blas ( const DenseMatrixBase< T > &  other,
_BLAS_Multiply_Flag  flag 
)
private

The _multiply_blas function computes A <- op(A) * op(B) using BLAS gemm function. Used in the right_multiply(), left_multiply(), right_multiply_transpose(), and left_multiply_transpose() routines. [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 37 of file dense_matrix_blas_lapack.C.

39 {
40  int result_size = 0;
41 
42  // For each case, determine the size of the final result make sure
43  // that the inner dimensions match
44  switch (flag)
45  {
46  case LEFT_MULTIPLY:
47  {
48  result_size = other.m() * this->n();
49  if (other.n() == this->m())
50  break;
51  }
52  libmesh_fallthrough();
53  case RIGHT_MULTIPLY:
54  {
55  result_size = other.n() * this->m();
56  if (other.m() == this->n())
57  break;
58  }
59  libmesh_fallthrough();
61  {
62  result_size = other.n() * this->n();
63  if (other.m() == this->m())
64  break;
65  }
66  libmesh_fallthrough();
68  {
69  result_size = other.m() * this->m();
70  if (other.n() == this->n())
71  break;
72  }
73  libmesh_fallthrough();
74  default:
75  libmesh_error_msg("Unknown flag selected or matrices are incompatible for multiplication.");
76  }
77 
78  // For this to work, the passed arg. must actually be a DenseMatrix<T>
79  const DenseMatrix<T> * const_that = cast_ptr<const DenseMatrix<T> *>(&other);
80 
81  // Also, although 'that' is logically const in this BLAS routine,
82  // the PETSc BLAS interface does not specify that any of the inputs are
83  // const. To use it, I must cast away const-ness.
84  DenseMatrix<T> * that = const_cast<DenseMatrix<T> *> (const_that);
85 
86  // Initialize A, B pointers for LEFT_MULTIPLY* cases
87  DenseMatrix<T> * A = this;
88  DenseMatrix<T> * B = that;
89 
90  // For RIGHT_MULTIPLY* cases, swap the meaning of A and B.
91  // Here is a full table of combinations we can pass to BLASgemm, and what the answer is when finished:
92  // pass A B -> (Fortran) -> A^T B^T -> (C++) -> (A^T B^T)^T -> (identity) -> B A "lt multiply"
93  // pass B A -> (Fortran) -> B^T A^T -> (C++) -> (B^T A^T)^T -> (identity) -> A B "rt multiply"
94  // pass A B^T -> (Fortran) -> A^T B -> (C++) -> (A^T B)^T -> (identity) -> B^T A "lt multiply t"
95  // pass B^T A -> (Fortran) -> B A^T -> (C++) -> (B A^T)^T -> (identity) -> A B^T "rt multiply t"
96  if (flag==RIGHT_MULTIPLY || flag==RIGHT_MULTIPLY_TRANSPOSE)
97  std::swap(A,B);
98 
99  // transa, transb values to pass to blas
100  char
101  transa[] = "n",
102  transb[] = "n";
103 
104  // Integer values to pass to BLAS:
105  //
106  // M
107  // In Fortran, the number of rows of op(A),
108  // In the BLAS documentation, typically known as 'M'.
109  //
110  // In C/C++, we set:
111  // M = n_cols(A) if (transa='n')
112  // n_rows(A) if (transa='t')
113  PetscBLASInt M = static_cast<PetscBLASInt>( A->n() );
114 
115  // N
116  // In Fortran, the number of cols of op(B), and also the number of cols of C.
117  // In the BLAS documentation, typically known as 'N'.
118  //
119  // In C/C++, we set:
120  // N = n_rows(B) if (transb='n')
121  // n_cols(B) if (transb='t')
122  PetscBLASInt N = static_cast<PetscBLASInt>( B->m() );
123 
124  // K
125  // In Fortran, the number of cols of op(A), and also
126  // the number of rows of op(B). In the BLAS documentation,
127  // typically known as 'K'.
128  //
129  // In C/C++, we set:
130  // K = n_rows(A) if (transa='n')
131  // n_cols(A) if (transa='t')
132  PetscBLASInt K = static_cast<PetscBLASInt>( A->m() );
133 
134  // LDA (leading dimension of A). In our cases,
135  // LDA is always the number of columns of A.
136  PetscBLASInt LDA = static_cast<PetscBLASInt>( A->n() );
137 
138  // LDB (leading dimension of B). In our cases,
139  // LDB is always the number of columns of B.
140  PetscBLASInt LDB = static_cast<PetscBLASInt>( B->n() );
141 
142  if (flag == LEFT_MULTIPLY_TRANSPOSE)
143  {
144  transb[0] = 't';
145  N = static_cast<PetscBLASInt>( B->n() );
146  }
147 
148  else if (flag == RIGHT_MULTIPLY_TRANSPOSE)
149  {
150  transa[0] = 't';
151  std::swap(M,K);
152  }
153 
154  // LDC (leading dimension of C). LDC is the
155  // number of columns in the solution matrix.
156  PetscBLASInt LDC = M;
157 
158  // Scalar values to pass to BLAS
159  //
160  // scalar multiplying the whole product AB
161  T alpha = 1.;
162 
163  // scalar multiplying C, which is the original matrix.
164  T beta = 0.;
165 
166  // Storage for the result
167  std::vector<T> result (result_size);
168 
169  // Finally ready to call the BLAS
170  BLASgemm_(transa, transb, &M, &N, &K, &alpha, A->get_values().data(), &LDA, B->get_values().data(), &LDB, &beta, result.data(), &LDC);
171 
172  // Update the relevant dimension for this matrix.
173  switch (flag)
174  {
175  case LEFT_MULTIPLY: { this->_m = other.m(); break; }
176  case RIGHT_MULTIPLY: { this->_n = other.n(); break; }
177  case LEFT_MULTIPLY_TRANSPOSE: { this->_m = other.n(); break; }
178  case RIGHT_MULTIPLY_TRANSPOSE: { this->_n = other.m(); break; }
179  default:
180  libmesh_error_msg("Unknown flag selected.");
181  }
182 
183  // Swap my data vector with the result
184  this->_val.swap(result);
185 }
unsigned int m() const
static PetscErrorCode Mat * A
void swap(Iterator &lhs, Iterator &rhs)
std::vector< T > _val
Definition: dense_matrix.h:532
unsigned int n() const

◆ _svd_helper()

template<typename T >
template void libMesh::DenseMatrix< T >::_svd_helper ( char  JOBU,
char  JOBVT,
std::vector< Real > &  sigma_val,
std::vector< Number > &  U_val,
std::vector< Number > &  VT_val 
)
private

Helper function that actually performs the SVD. [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 381 of file dense_matrix_blas_lapack.C.

386 {
387 
388  // M (input)
389  // The number of rows of the matrix A. M >= 0.
390  // In C/C++, pass the number of *cols* of A
391  PetscBLASInt M = this->n();
392 
393  // N (input)
394  // The number of columns of the matrix A. N >= 0.
395  // In C/C++, pass the number of *rows* of A
396  PetscBLASInt N = this->m();
397 
398  PetscBLASInt min_MN = (M < N) ? M : N;
399  PetscBLASInt max_MN = (M > N) ? M : N;
400 
401  // A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
402  // On entry, the M-by-N matrix A.
403  // On exit,
404  // if JOBU = 'O', A is overwritten with the first min(m,n)
405  // columns of U (the left singular vectors,
406  // stored columnwise);
407  // if JOBVT = 'O', A is overwritten with the first min(m,n)
408  // rows of V**T (the right singular vectors,
409  // stored rowwise);
410  // if JOBU != 'O' and JOBVT != 'O', the contents of A are destroyed.
411 
412  // LDA (input)
413  // The leading dimension of the array A. LDA >= max(1,M).
414  PetscBLASInt LDA = M;
415 
416  // S (output) DOUBLE PRECISION array, dimension (min(M,N))
417  // The singular values of A, sorted so that S(i) >= S(i+1).
418  sigma_val.resize( min_MN );
419 
420  // LDU (input)
421  // The leading dimension of the array U. LDU >= 1; if
422  // JOBU = 'S' or 'A', LDU >= M.
423  PetscBLASInt LDU = M;
424 
425  // U (output) DOUBLE PRECISION array, dimension (LDU,UCOL)
426  // (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
427  // If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
428  // if JOBU = 'S', U contains the first min(m,n) columns of U
429  // (the left singular vectors, stored columnwise);
430  // if JOBU = 'N' or 'O', U is not referenced.
431  if (JOBU == 'S')
432  U_val.resize( LDU*min_MN );
433  else
434  U_val.resize( LDU*M );
435 
436  // LDVT (input)
437  // The leading dimension of the array VT. LDVT >= 1; if
438  // JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
439  PetscBLASInt LDVT = N;
440  if (JOBVT == 'S')
441  LDVT = min_MN;
442 
443  // VT (output) DOUBLE PRECISION array, dimension (LDVT,N)
444  // If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
445  // V**T;
446  // if JOBVT = 'S', VT contains the first min(m,n) rows of
447  // V**T (the right singular vectors, stored rowwise);
448  // if JOBVT = 'N' or 'O', VT is not referenced.
449  VT_val.resize( LDVT*N );
450 
451  // LWORK (input)
452  // The dimension of the array WORK.
453  // LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
454  // For good performance, LWORK should generally be larger.
455  //
456  // If LWORK = -1, then a workspace query is assumed; the routine
457  // only calculates the optimal size of the WORK array, returns
458  // this value as the first entry of the WORK array, and no error
459  // message related to LWORK is issued by XERBLA.
460  PetscBLASInt larger = (3*min_MN+max_MN > 5*min_MN) ? 3*min_MN+max_MN : 5*min_MN;
461  PetscBLASInt LWORK = (larger > 1) ? larger : 1;
462 
463 
464  // WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
465  // On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
466  // if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
467  // superdiagonal elements of an upper bidiagonal matrix B
468  // whose diagonal is in S (not necessarily sorted). B
469  // satisfies A = U * B * VT, so it has the same singular values
470  // as A, and singular vectors related by U and VT.
471  std::vector<Number> WORK( LWORK );
472 
473  // INFO (output)
474  // = 0: successful exit.
475  // < 0: if INFO = -i, the i-th argument had an illegal value.
476  // > 0: if DBDSQR did not converge, INFO specifies how many
477  // superdiagonals of an intermediate bidiagonal form B
478  // did not converge to zero. See the description of WORK
479  // above for details.
480  PetscBLASInt INFO = 0;
481 
482  // Ready to call the actual factorization routine through PETSc's interface.
483 #ifdef LIBMESH_USE_REAL_NUMBERS
484  // Note that the call to LAPACKgesvd_ may modify _val
485  LAPACKgesvd_(&JOBU, &JOBVT, &M, &N, _val.data(), &LDA, sigma_val.data(), U_val.data(),
486  &LDU, VT_val.data(), &LDVT, WORK.data(), &LWORK, &INFO);
487 #else
488  // When we have LIBMESH_USE_COMPLEX_NUMBERS then we must pass an array of Complex
489  // numbers to LAPACKgesvd_, but _val may contain Reals so we copy to Number below to
490  // handle both the real-valued and complex-valued cases.
491  std::vector<Number> val_copy(_val.size());
492  for (std::size_t i=0; i<_val.size(); i++)
493  val_copy[i] = _val[i];
494 
495  std::vector<Real> RWORK(5 * min_MN);
496  LAPACKgesvd_(&JOBU, &JOBVT, &M, &N, val_copy.data(), &LDA, sigma_val.data(), U_val.data(),
497  &LDU, VT_val.data(), &LDVT, WORK.data(), &LWORK, RWORK.data(), &INFO);
498 #endif
499 
500  // Check return value for errors
501  if (INFO != 0)
502  libmesh_error_msg("INFO=" << INFO << ", Error during Lapack SVD calculation!");
503 }
unsigned int m() const
std::vector< T > _val
Definition: dense_matrix.h:532
unsigned int n() const

◆ _svd_lapack() [1/2]

template<typename T >
template void libMesh::DenseMatrix< T >::_svd_lapack ( DenseVector< Real > &  sigma)
private

Computes an SVD of the matrix using the Lapack routine "getsvd". [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 274 of file dense_matrix_blas_lapack.C.

275 {
276  // The calling sequence for dgetrf is:
277  // DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, INFO )
278 
279  // JOBU (input)
280  // Specifies options for computing all or part of the matrix U:
281  // = 'A': all M columns of U are returned in array U:
282  // = 'S': the first min(m,n) columns of U (the left singular
283  // vectors) are returned in the array U;
284  // = 'O': the first min(m,n) columns of U (the left singular
285  // vectors) are overwritten on the array A;
286  // = 'N': no columns of U (no left singular vectors) are
287  // computed.
288  char JOBU = 'N';
289 
290  // JOBVT (input)
291  // Specifies options for computing all or part of the matrix
292  // V**T:
293  // = 'A': all N rows of V**T are returned in the array VT;
294  // = 'S': the first min(m,n) rows of V**T (the right singular
295  // vectors) are returned in the array VT;
296  // = 'O': the first min(m,n) rows of V**T (the right singular
297  // vectors) are overwritten on the array A;
298  // = 'N': no rows of V**T (no right singular vectors) are
299  // computed.
300  char JOBVT = 'N';
301 
302  std::vector<Real> sigma_val;
303  std::vector<Number> U_val;
304  std::vector<Number> VT_val;
305 
306  _svd_helper(JOBU, JOBVT, sigma_val, U_val, VT_val);
307 
308  // Copy the singular values into sigma, ignore U_val and VT_val
309  sigma.resize(cast_int<unsigned int>(sigma_val.size()));
310  for (auto i : IntRange<int>(0, sigma.size()))
311  sigma(i) = sigma_val[i];
312 }
void _svd_helper(char JOBU, char JOBVT, std::vector< Real > &sigma_val, std::vector< Number > &U_val, std::vector< Number > &VT_val)

◆ _svd_lapack() [2/2]

template<typename T >
template void libMesh::DenseMatrix< T >::_svd_lapack ( DenseVector< Real > &  sigma,
DenseMatrix< Number > &  U,
DenseMatrix< Number > &  VT 
)
private

Computes a "reduced" SVD of the matrix using the Lapack routine "getsvd". [ Implementation in dense_matrix_blas_lapack.C ]

Definition at line 315 of file dense_matrix_blas_lapack.C.

318 {
319  // The calling sequence for dgetrf is:
320  // DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, INFO )
321 
322  // JOBU (input)
323  // Specifies options for computing all or part of the matrix U:
324  // = 'A': all M columns of U are returned in array U:
325  // = 'S': the first min(m,n) columns of U (the left singular
326  // vectors) are returned in the array U;
327  // = 'O': the first min(m,n) columns of U (the left singular
328  // vectors) are overwritten on the array A;
329  // = 'N': no columns of U (no left singular vectors) are
330  // computed.
331  char JOBU = 'S';
332 
333  // JOBVT (input)
334  // Specifies options for computing all or part of the matrix
335  // V**T:
336  // = 'A': all N rows of V**T are returned in the array VT;
337  // = 'S': the first min(m,n) rows of V**T (the right singular
338  // vectors) are returned in the array VT;
339  // = 'O': the first min(m,n) rows of V**T (the right singular
340  // vectors) are overwritten on the array A;
341  // = 'N': no rows of V**T (no right singular vectors) are
342  // computed.
343  char JOBVT = 'S';
344 
345  // Note: Lapack is going to compute the singular values of A^T. If
346  // A=U * S * V^T, then A^T = V * S * U^T, which means that the
347  // values returned in the "U_val" array actually correspond to the
348  // entries of the V matrix, and the values returned in the VT_val
349  // array actually correspond to the entries of U^T. Therefore, we
350  // pass VT in the place of U and U in the place of VT below!
351  std::vector<Real> sigma_val;
352  int M = this->n();
353  int N = this->m();
354  int min_MN = (M < N) ? M : N;
355 
356  // Size user-provided storage appropriately. Inside svd_helper:
357  // U_val is sized to (M x min_MN)
358  // VT_val is sized to (min_MN x N)
359  // So, we set up U to have the shape of "VT_val^T", and VT to
360  // have the shape of "U_val^T".
361  //
362  // Finally, since the results are stored in column-major order by
363  // Lapack, but we actually want the transpose of what Lapack
364  // returns, this means (conveniently) that we don't even have to
365  // copy anything after the call to _svd_helper, it should already be
366  // in the correct order!
367  U.resize(N, min_MN);
368  VT.resize(min_MN, M);
369 
370  _svd_helper(JOBU, JOBVT, sigma_val, VT.get_values(), U.get_values());
371 
372  // Copy the singular values into sigma.
373  sigma.resize(cast_int<unsigned int>(sigma_val.size()));
374  for (auto i : IntRange<int>(0, sigma.size()))
375  sigma(i) = sigma_val[i];
376 }
unsigned int m() const
void _svd_helper(char JOBU, char JOBVT, std::vector< Real > &sigma_val, std::vector< Number > &U_val, std::vector< Number > &VT_val)
std::vector< T > & get_values()
Definition: dense_matrix.h:341
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ _svd_solve_lapack()

template<typename T>
template void libMesh::DenseMatrix< T >::_svd_solve_lapack ( const DenseVector< T > &  rhs,
DenseVector< T > &  x,
Real  rcond 
) const
private

Called by svd_solve(rhs).

Definition at line 526 of file dense_matrix_blas_lapack.C.

529 {
530  // Since BLAS is expecting column-major storage, we first need to
531  // make a transposed copy of *this, then pass it to the gelss
532  // routine instead of the original. This extra copy is kind of a
533  // bummer, it might be better if we could use the full SVD to
534  // compute the least-squares solution instead... Note that it isn't
535  // completely terrible either, since A_trans gets overwritten by
536  // Lapack, and we usually would end up making a copy of A outside
537  // the function call anyway.
538  DenseMatrix<T> A_trans;
539  this->get_transpose(A_trans);
540 
541  // M
542  // The number of rows of the input matrix. M >= 0.
543  // This is actually the number of *columns* of A_trans.
544  PetscBLASInt M = A_trans.n();
545 
546  // N
547  // The number of columns of the matrix A. N >= 0.
548  // This is actually the number of *rows* of A_trans.
549  PetscBLASInt N = A_trans.m();
550 
551  // We'll use the min and max of (M,N) several times below.
552  PetscBLASInt max_MN = std::max(M,N);
553  PetscBLASInt min_MN = std::min(M,N);
554 
555  // NRHS
556  // The number of right hand sides, i.e., the number of columns
557  // of the matrices B and X. NRHS >= 0.
558  // This could later be generalized to solve for multiple right-hand
559  // sides...
560  PetscBLASInt NRHS = 1;
561 
562  // A is double precision array, dimension (LDA,N)
563  // On entry, the M-by-N matrix A.
564  // On exit, the first min(m,n) rows of A are overwritten with
565  // its right singular vectors, stored rowwise.
566  //
567  // The data vector that will be passed to Lapack.
568  std::vector<T> & A_trans_vals = A_trans.get_values();
569 
570  // LDA
571  // The leading dimension of the array A. LDA >= max(1,M).
572  PetscBLASInt LDA = M;
573 
574  // B is double precision array, dimension (LDB,NRHS)
575  // On entry, the M-by-NRHS right hand side matrix B.
576  // On exit, B is overwritten by the N-by-NRHS solution
577  // matrix X. If m >= n and RANK = n, the residual
578  // sum-of-squares for the solution in the i-th column is given
579  // by the sum of squares of elements n+1:m in that column.
580  //
581  // Since we don't want the user's rhs vector to be overwritten by
582  // the solution, we copy the rhs values into the solution vector "x"
583  // now. x needs to be long enough to hold both the (Nx1) solution
584  // vector or the (Mx1) rhs, so size it to the max of those.
585  x.resize(max_MN);
586  for (auto i : IntRange<int>(0, rhs.size()))
587  x(i) = rhs(i);
588 
589  // Make the syntax below simpler by grabbing a reference to this array.
590  std::vector<T> & B = x.get_values();
591 
592  // LDB
593  // The leading dimension of the array B. LDB >= max(1,max(M,N)).
594  PetscBLASInt LDB = x.size();
595 
596  // S is double precision array, dimension (min(M,N))
597  // The singular values of A in decreasing order.
598  // The condition number of A in the 2-norm = S(1)/S(min(m,n)).
599  std::vector<T> S(min_MN);
600 
601  // RCOND
602  // Used to determine the effective rank of A. Singular values
603  // S(i) <= RCOND*S(1) are treated as zero. If RCOND < 0, machine
604  // precision is used instead.
605  Real RCOND = rcond;
606 
607  // RANK
608  // The effective rank of A, i.e., the number of singular values
609  // which are greater than RCOND*S(1).
610  PetscBLASInt RANK = 0;
611 
612  // LWORK
613  // The dimension of the array WORK. LWORK >= 1, and also:
614  // LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
615  // For good performance, LWORK should generally be larger.
616  //
617  // If LWORK = -1, then a workspace query is assumed; the routine
618  // only calculates the optimal size of the WORK array, returns
619  // this value as the first entry of the WORK array, and no error
620  // message related to LWORK is issued by XERBLA.
621  //
622  // The factor of 3/2 is arbitrary and is used to satisfy the "should
623  // generally be larger" clause.
624  PetscBLASInt LWORK = (3*min_MN + std::max(2*min_MN, std::max(max_MN, NRHS))) * 3/2;
625 
626  // WORK is double precision array, dimension (MAX(1,LWORK))
627  // On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
628  std::vector<T> WORK(LWORK);
629 
630  // INFO
631  // = 0: successful exit
632  // < 0: if INFO = -i, the i-th argument had an illegal value.
633  // > 0: the algorithm for computing the SVD failed to converge;
634  // if INFO = i, i off-diagonal elements of an intermediate
635  // bidiagonal form did not converge to zero.
636  PetscBLASInt INFO = 0;
637 
638  // LAPACKgelss_(const PetscBLASInt *, // M
639  // const PetscBLASInt *, // N
640  // const PetscBLASInt *, // NRHS
641  // PetscScalar *, // A
642  // const PetscBLASInt *, // LDA
643  // PetscScalar *, // B
644  // const PetscBLASInt *, // LDB
645  // PetscReal *, // S(out) = singular values of A in increasing order
646  // const PetscReal *, // RCOND = tolerance for singular values
647  // PetscBLASInt *, // RANK(out) = number of "non-zero" singular values
648  // PetscScalar *, // WORK
649  // const PetscBLASInt *, // LWORK
650  // PetscBLASInt *); // INFO
651  LAPACKgelss_(&M, &N, &NRHS, A_trans_vals.data(), &LDA, B.data(), &LDB, S.data(), &RCOND, &RANK, WORK.data(), &LWORK, &INFO);
652 
653  // Check for errors in the Lapack call
654  if (INFO < 0)
655  libmesh_error_msg("Error, argument " << -INFO << " to LAPACKgelss_ had an illegal value.");
656  if (INFO > 0)
657  libmesh_error_msg("The algorithm for computing the SVD failed to converge!");
658 
659  // Debugging: print singular values and information about condition number:
660  // libMesh::err << "RCOND=" << RCOND << std::endl;
661  // libMesh::err << "Singular values: " << std::endl;
662  // for (std::size_t i=0; i<S.size(); ++i)
663  // libMesh::err << S[i] << std::endl;
664  // libMesh::err << "The condition number of A is approximately: " << S[0]/S.back() << std::endl;
665 
666  // Lapack has already written the solution into B, but it will be
667  // the wrong size for non-square problems, so we need to resize it
668  // correctly. The size of the solution vector should be the number
669  // of columns of the original A matrix. Unfortunately, resizing a
670  // DenseVector currently also zeros it out (unlike a std::vector) so
671  // we'll resize the underlying storage directly (the size is not
672  // stored independently elsewhere).
673  x.get_values().resize(this->n());
674 }
long double max(long double a, double b)
void get_transpose(DenseMatrix< T > &dest) const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
unsigned int n() const
long double min(long double a, double b)

◆ add() [1/2]

template<typename T >
template<typename T2 , typename T3 >
boostcopy::enable_if_c< ScalarTraits< T2 >::value, void >::type libMesh::DenseMatrixBase< T >::add ( const T2  factor,
const DenseMatrixBase< T3 > &  mat 
)
inlineinherited

Adds factor to every element in the matrix. This should only work if T += T2 * T3 is valid C++ and if T2 is scalar. Return type is void

Definition at line 188 of file dense_matrix_base.h.

References libMesh::DenseMatrixBase< T >::el(), libMesh::DenseMatrixBase< T >::m(), and libMesh::DenseMatrixBase< T >::n().

190 {
191  libmesh_assert_equal_to (this->m(), mat.m());
192  libmesh_assert_equal_to (this->n(), mat.n());
193 
194  for (unsigned int j=0; j<this->n(); j++)
195  for (unsigned int i=0; i<this->m(); i++)
196  this->el(i,j) += factor*mat.el(i,j);
197 }
unsigned int m() const
virtual T el(const unsigned int i, const unsigned int j) const =0
unsigned int n() const

◆ add() [2/2]

template<typename T >
template<typename T2 , typename T3 >
boostcopy::enable_if_c< ScalarTraits< T2 >::value, void >::type libMesh::DenseMatrix< T >::add ( const T2  factor,
const DenseMatrix< T3 > &  mat 
)
inline

Adds factor times mat to this matrix.

Returns
A reference to *this.

Definition at line 884 of file dense_matrix.h.

Referenced by libMesh::FEMSystem::assembly().

886 {
887  libmesh_assert_equal_to (this->m(), mat.m());
888  libmesh_assert_equal_to (this->n(), mat.n());
889 
890  for (unsigned int i=0; i<this->m(); i++)
891  for (unsigned int j=0; j<this->n(); j++)
892  (*this)(i,j) += factor * mat(i,j);
893 }
unsigned int m() const
unsigned int n() const

◆ cholesky_solve()

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::cholesky_solve ( const DenseVector< T2 > &  b,
DenseVector< T2 > &  x 
)

For symmetric positive definite (SPD) matrices. A Cholesky factorization of A such that A = L L^T is about twice as fast as a standard LU factorization. Therefore you can use this method if you know a-priori that the matrix is SPD. If the matrix is not SPD, an error is generated. One nice property of Cholesky decompositions is that they do not require pivoting for stability.

Note
This method may also be used when A is real-valued and x and b are complex-valued.

Definition at line 929 of file dense_matrix_impl.h.

Referenced by libMesh::FEGenericBase< FEOutputType< T >::type >::coarsened_dof_values(), libMesh::FEGenericBase< FEOutputType< T >::type >::compute_periodic_constraints(), libMesh::FEGenericBase< FEOutputType< T >::type >::compute_proj_constraints(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()(), libMesh::BoundaryProjectSolution::operator()(), and libMesh::HPCoarsenTest::select_refinement().

931 {
932  // Check for a previous decomposition
933  switch(this->_decomposition_type)
934  {
935  case NONE:
936  {
937  this->_cholesky_decompose ();
938  break;
939  }
940 
941  case CHOLESKY:
942  {
943  // Already factored, just need to call back_substitute.
944  break;
945  }
946 
947  default:
948  libmesh_error_msg("Error! This matrix already has a different decomposition...");
949  }
950 
951  // Perform back substitution
952  this->_cholesky_back_substitute (b, x);
953 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
void _cholesky_back_substitute(const DenseVector< T2 > &b, DenseVector< T2 > &x) const

◆ condense() [1/2]

template<typename T >
void libMesh::DenseMatrixBase< T >::condense ( const unsigned int  i,
const unsigned int  j,
const T  val,
DenseVectorBase< T > &  rhs 
)
protectedinherited

Condense-out the (i,j) entry of the matrix, forcing it to take on the value val. This is useful in numerical simulations for applying boundary conditions. Preserves the symmetry of the matrix.

Definition at line 58 of file dense_matrix_base.C.

References libMesh::DenseVectorBase< T >::el(), and libMesh::DenseVectorBase< T >::size().

Referenced by libMesh::DenseMatrix< Number >::condense().

62 {
63  libmesh_assert_equal_to (this->_m, rhs.size());
64  libmesh_assert_equal_to (iv, jv);
65 
66 
67  // move the known value into the RHS
68  // and zero the column
69  for (unsigned int i=0; i<this->m(); i++)
70  {
71  rhs.el(i) -= this->el(i,jv)*val;
72  this->el(i,jv) = 0.;
73  }
74 
75  // zero the row
76  for (unsigned int j=0; j<this->n(); j++)
77  this->el(iv,j) = 0.;
78 
79  this->el(iv,jv) = 1.;
80  rhs.el(iv) = val;
81 
82 }
unsigned int m() const
virtual T el(const unsigned int i, const unsigned int j) const =0
unsigned int n() const

◆ condense() [2/2]

template<typename T>
void libMesh::DenseMatrix< T >::condense ( const unsigned int  i,
const unsigned int  j,
const T  val,
DenseVector< T > &  rhs 
)
inline

Condense-out the (i,j) entry of the matrix, forcing it to take on the value val. This is useful in numerical simulations for applying boundary conditions. Preserves the symmetry of the matrix.

Definition at line 354 of file dense_matrix.h.

358  { DenseMatrixBase<T>::condense (i, j, val, rhs); }
void condense(const unsigned int i, const unsigned int j, const T val, DenseVectorBase< T > &rhs)

◆ det()

template<typename T >
T libMesh::DenseMatrix< T >::det ( )
Returns
The determinant of the matrix.
Note
Implemented by computing an LU decomposition and then taking the product of the diagonal terms. Therefore this is a non-const method which modifies the entries of the matrix.

Definition at line 868 of file dense_matrix_impl.h.

869 {
870  switch(this->_decomposition_type)
871  {
872  case NONE:
873  {
874  // First LU decompose the matrix.
875  // Note that the lu_decompose routine will check to see if the
876  // matrix is square so we don't worry about it.
877  if (this->use_blas_lapack)
878  this->_lu_decompose_lapack();
879  else
880  this->_lu_decompose ();
881  }
882  case LU:
883  case LU_BLAS_LAPACK:
884  {
885  // Already decomposed, don't do anything
886  break;
887  }
888  default:
889  libmesh_error_msg("Error! Can't compute the determinant under the current decomposition.");
890  }
891 
892  // A variable to keep track of the running product of diagonal terms.
893  T determinant = 1.;
894 
895  // Loop over diagonal terms, computing the product. In practice,
896  // be careful because this value could easily become too large to
897  // fit in a double or float. To be safe, one should keep track of
898  // the power (of 10) of the determinant in a separate variable
899  // and maintain an order 1 value for the determinant itself.
900  unsigned int n_interchanges = 0;
901  for (unsigned int i=0; i<this->m(); i++)
902  {
903  if (this->_decomposition_type==LU)
904  if (_pivots[i] != static_cast<pivot_index_t>(i))
905  n_interchanges++;
906 
907  // Lapack pivots are 1-based!
909  if (_pivots[i] != static_cast<pivot_index_t>(i+1))
910  n_interchanges++;
911 
912  determinant *= (*this)(i,i);
913  }
914 
915  // Compute sign of determinant, depends on number of row interchanges!
916  // The sign should be (-1)^{n}, where n is the number of interchanges.
917  Real sign = n_interchanges % 2 == 0 ? 1. : -1.;
918 
919  return sign*determinant;
920 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
unsigned int m() const
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real
std::vector< pivot_index_t > _pivots
Definition: dense_matrix.h:672

◆ el() [1/2]

template<typename T>
virtual T libMesh::DenseMatrix< T >::el ( const unsigned int  i,
const unsigned int  j 
) const
inlineoverridevirtual
Returns
The (i,j) element of the matrix. Since internal data representations may differ, you must redefine this function.

Implements libMesh::DenseMatrixBase< T >.

Definition at line 88 of file dense_matrix.h.

90  { return (*this)(i,j); }

◆ el() [2/2]

template<typename T>
virtual T& libMesh::DenseMatrix< T >::el ( const unsigned int  i,
const unsigned int  j 
)
inlineoverridevirtual
Returns
The (i,j) element of the matrix as a writable reference. Since internal data representations may differ, you must redefine this function.

Implements libMesh::DenseMatrixBase< T >.

Definition at line 92 of file dense_matrix.h.

94  { return (*this)(i,j); }

◆ evd()

template<typename T>
void libMesh::DenseMatrix< T >::evd ( DenseVector< T > &  lambda_real,
DenseVector< T > &  lambda_imag 
)

Compute the eigenvalues (both real and imaginary parts) of a general matrix.

Warning: the contents of *this are overwritten by this function!

The implementation requires the LAPACKgeev_ function which is wrapped by PETSc.

Definition at line 824 of file dense_matrix_impl.h.

826 {
827  // We use the LAPACK eigenvalue problem implementation
828  _evd_lapack(lambda_real, lambda_imag);
829 }
void _evd_lapack(DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > *VL=nullptr, DenseMatrix< T > *VR=nullptr)

◆ evd_left()

template<typename T>
void libMesh::DenseMatrix< T >::evd_left ( DenseVector< T > &  lambda_real,
DenseVector< T > &  lambda_imag,
DenseMatrix< T > &  VL 
)

Compute the eigenvalues (both real and imaginary parts) and left eigenvectors of a general matrix, $ A $.

Warning: the contents of *this are overwritten by this function!

The left eigenvector $ u_j $ of $ A $ satisfies: $ u_j^H A = lambda_j u_j^H $ where $ u_j^H $ denotes the conjugate-transpose of $ u_j $.

If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then the j-th and (j+1)-st columns of VL "share" their real-valued storage in the following way: u_j = VL(:,j) + i*VL(:,j+1) and u_{j+1} = VL(:,j) - i*VL(:,j+1).

The implementation requires the LAPACKgeev_ routine which is provided by PETSc.

Definition at line 834 of file dense_matrix_impl.h.

837 {
838  // We use the LAPACK eigenvalue problem implementation
839  _evd_lapack(lambda_real, lambda_imag, &VL, nullptr);
840 }
void _evd_lapack(DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > *VL=nullptr, DenseMatrix< T > *VR=nullptr)

◆ evd_left_and_right()

template<typename T>
void libMesh::DenseMatrix< T >::evd_left_and_right ( DenseVector< T > &  lambda_real,
DenseVector< T > &  lambda_imag,
DenseMatrix< T > &  VL,
DenseMatrix< T > &  VR 
)

Compute the eigenvalues (both real and imaginary parts) as well as the left and right eigenvectors of a general matrix.

Warning: the contents of *this are overwritten by this function!

See the documentation of the evd_left() and evd_right() functions for more information. The implementation requires the LAPACKgeev_ routine which is provided by PETSc.

Definition at line 856 of file dense_matrix_impl.h.

860 {
861  // We use the LAPACK eigenvalue problem implementation
862  _evd_lapack(lambda_real, lambda_imag, &VL, &VR);
863 }
void _evd_lapack(DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > *VL=nullptr, DenseMatrix< T > *VR=nullptr)

◆ evd_right()

template<typename T>
void libMesh::DenseMatrix< T >::evd_right ( DenseVector< T > &  lambda_real,
DenseVector< T > &  lambda_imag,
DenseMatrix< T > &  VR 
)

Compute the eigenvalues (both real and imaginary parts) and right eigenvectors of a general matrix, $ A $.

Warning: the contents of *this are overwritten by this function!

The right eigenvector $ v_j $ of $ A $ satisfies: $ A v_j = lambda_j v_j $ where $ lambda_j $ is its corresponding eigenvalue.

Note
If the j-th and (j+1)-st eigenvalues form a complex conjugate pair, then the j-th and (j+1)-st columns of VR "share" their real-valued storage in the following way: v_j = VR(:,j) + i*VR(:,j+1) and v_{j+1} = VR(:,j) - i*VR(:,j+1).

The implementation requires the LAPACKgeev_ routine which is provided by PETSc.

Definition at line 845 of file dense_matrix_impl.h.

848 {
849  // We use the LAPACK eigenvalue problem implementation
850  _evd_lapack(lambda_real, lambda_imag, nullptr, &VR);
851 }
void _evd_lapack(DenseVector< T > &lambda_real, DenseVector< T > &lambda_imag, DenseMatrix< T > *VL=nullptr, DenseMatrix< T > *VR=nullptr)

◆ get_principal_submatrix() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::get_principal_submatrix ( unsigned int  sub_m,
unsigned int  sub_n,
DenseMatrix< T > &  dest 
) const

Put the sub_m x sub_n principal submatrix into dest.

Definition at line 556 of file dense_matrix_impl.h.

559 {
560  libmesh_assert( (sub_m <= this->m()) && (sub_n <= this->n()) );
561 
562  dest.resize(sub_m, sub_n);
563  for (unsigned int i=0; i<sub_m; i++)
564  for (unsigned int j=0; j<sub_n; j++)
565  dest(i,j) = (*this)(i,j);
566 }
unsigned int m() const
unsigned int n() const

◆ get_principal_submatrix() [2/2]

template<typename T>
void libMesh::DenseMatrix< T >::get_principal_submatrix ( unsigned int  sub_m,
DenseMatrix< T > &  dest 
) const

Put the sub_m x sub_m principal submatrix into dest.

Definition at line 586 of file dense_matrix_impl.h.

587 {
588  get_principal_submatrix(sub_m, sub_m, dest);
589 }
void get_principal_submatrix(unsigned int sub_m, unsigned int sub_n, DenseMatrix< T > &dest) const

◆ get_transpose()

template<typename T>
void libMesh::DenseMatrix< T >::get_transpose ( DenseMatrix< T > &  dest) const

Put the tranposed matrix into dest.

Definition at line 594 of file dense_matrix_impl.h.

595 {
596  dest.resize(this->n(), this->m());
597 
598  for (unsigned int i=0; i<dest.m(); i++)
599  for (unsigned int j=0; j<dest.n(); j++)
600  dest(i,j) = (*this)(j,i);
601 }
unsigned int m() const
unsigned int n() const

◆ get_values() [1/2]

template<typename T>
std::vector<T>& libMesh::DenseMatrix< T >::get_values ( )
inline
Returns
A reference to the underlying data storage vector.

This should be used with caution (i.e. one should not change the size of the vector, etc.) but is useful for interoperating with low level BLAS routines which expect a simple array.

Definition at line 341 of file dense_matrix.h.

Referenced by libMesh::DenseMatrix< Number >::_evd_lapack(), libMesh::DenseMatrix< Number >::_matvec_blas(), libMesh::DenseMatrix< Number >::_multiply_blas(), libMesh::DenseMatrix< Number >::_svd_lapack(), libMesh::DenseMatrix< Number >::_svd_solve_lapack(), libMesh::PetscMatrix< T >::add_block_matrix(), libMesh::EpetraMatrix< T >::add_matrix(), and libMesh::PetscMatrix< T >::add_matrix().

341 { return _val; }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ get_values() [2/2]

template<typename T>
const std::vector<T>& libMesh::DenseMatrix< T >::get_values ( ) const
inline
Returns
A constant reference to the underlying data storage vector.

Definition at line 346 of file dense_matrix.h.

346 { return _val; }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ l1_norm()

template<typename T >
Real libMesh::DenseMatrix< T >::l1_norm ( ) const
inline
Returns
The l1-norm of the matrix, that is, the max column sum:

$ |M|_1 = max_{all columns j} \sum_{all rows i} |M_ij| $,

This is the natural matrix norm that is compatible to the l1-norm for vectors, i.e. $ |Mv|_1 \leq |M|_1 |v|_1 $.

Definition at line 991 of file dense_matrix.h.

Referenced by libMesh::FEMSystem::assembly().

992 {
993  libmesh_assert (this->_m);
994  libmesh_assert (this->_n);
995 
996  Real columnsum = 0.;
997  for (unsigned int i=0; i!=this->_m; i++)
998  {
999  columnsum += std::abs((*this)(i,0));
1000  }
1001  Real my_max = columnsum;
1002  for (unsigned int j=1; j!=this->_n; j++)
1003  {
1004  columnsum = 0.;
1005  for (unsigned int i=0; i!=this->_m; i++)
1006  {
1007  columnsum += std::abs((*this)(i,j));
1008  }
1009  my_max = (my_max > columnsum? my_max : columnsum);
1010  }
1011  return my_max;
1012 }
double abs(double a)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ left_multiply() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::left_multiply ( const DenseMatrixBase< T > &  M2)
overridevirtual

Performs the operation: (*this) <- M2 * (*this)

Implements libMesh::DenseMatrixBase< T >.

Definition at line 40 of file dense_matrix_impl.h.

41 {
42  if (this->use_blas_lapack)
43  this->_multiply_blas(M2, LEFT_MULTIPLY);
44  else
45  {
46  // (*this) <- M2 * (*this)
47  // Where:
48  // (*this) = (m x n),
49  // M2 = (m x p),
50  // M3 = (p x n)
51 
52  // M3 is a copy of *this before it gets resize()d
53  DenseMatrix<T> M3(*this);
54 
55  // Resize *this so that the result can fit
56  this->resize (M2.m(), M3.n());
57 
58  // Call the multiply function in the base class
59  this->multiply(*this, M2, M3);
60  }
61 }
void _multiply_blas(const DenseMatrixBase< T > &other, _BLAS_Multiply_Flag flag)
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
static void multiply(DenseMatrixBase< T > &M1, const DenseMatrixBase< T > &M2, const DenseMatrixBase< T > &M3)

◆ left_multiply() [2/2]

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::left_multiply ( const DenseMatrixBase< T2 > &  M2)

Left multiplies by the matrix M2 of different type

Definition at line 67 of file dense_matrix_impl.h.

68 {
69  // (*this) <- M2 * (*this)
70  // Where:
71  // (*this) = (m x n),
72  // M2 = (m x p),
73  // M3 = (p x n)
74 
75  // M3 is a copy of *this before it gets resize()d
76  DenseMatrix<T> M3(*this);
77 
78  // Resize *this so that the result can fit
79  this->resize (M2.m(), M3.n());
80 
81  // Call the multiply function in the base class
82  this->multiply(*this, M2, M3);
83 }
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
static void multiply(DenseMatrixBase< T > &M1, const DenseMatrixBase< T > &M2, const DenseMatrixBase< T > &M3)

◆ left_multiply_transpose() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::left_multiply_transpose ( const DenseMatrix< T > &  A)

Left multiplies by the transpose of the matrix A.

Definition at line 88 of file dense_matrix_impl.h.

Referenced by libMesh::DofMap::constrain_element_matrix(), libMesh::DofMap::constrain_element_matrix_and_vector(), and libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector().

89 {
90  if (this->use_blas_lapack)
92  else
93  {
94  //Check to see if we are doing (A^T)*A
95  if (this == &A)
96  {
97  //libmesh_here();
98  DenseMatrix<T> B(*this);
99 
100  // Simple but inefficient way
101  // return this->left_multiply_transpose(B);
102 
103  // More efficient, but more code way
104  // If A is mxn, the result will be a square matrix of Size n x n.
105  const unsigned int n_rows = A.m();
106  const unsigned int n_cols = A.n();
107 
108  // resize() *this and also zero out all entries.
109  this->resize(n_cols,n_cols);
110 
111  // Compute the lower-triangular part
112  for (unsigned int i=0; i<n_cols; ++i)
113  for (unsigned int j=0; j<=i; ++j)
114  for (unsigned int k=0; k<n_rows; ++k) // inner products are over n_rows
115  (*this)(i,j) += B(k,i)*B(k,j);
116 
117  // Copy lower-triangular part into upper-triangular part
118  for (unsigned int i=0; i<n_cols; ++i)
119  for (unsigned int j=i+1; j<n_cols; ++j)
120  (*this)(i,j) = (*this)(j,i);
121  }
122 
123  else
124  {
125  DenseMatrix<T> B(*this);
126 
127  this->resize (A.n(), B.n());
128 
129  libmesh_assert_equal_to (A.m(), B.m());
130  libmesh_assert_equal_to (this->m(), A.n());
131  libmesh_assert_equal_to (this->n(), B.n());
132 
133  const unsigned int m_s = A.n();
134  const unsigned int p_s = A.m();
135  const unsigned int n_s = this->n();
136 
137  // Do it this way because there is a
138  // decent chance (at least for constraint matrices)
139  // that A.transpose(i,k) = 0.
140  for (unsigned int i=0; i<m_s; i++)
141  for (unsigned int k=0; k<p_s; k++)
142  if (A.transpose(i,k) != 0.)
143  for (unsigned int j=0; j<n_s; j++)
144  (*this)(i,j) += A.transpose(i,k)*B(k,j);
145  }
146  }
147 
148 }
unsigned int m() const
void _multiply_blas(const DenseMatrixBase< T > &other, _BLAS_Multiply_Flag flag)
static PetscErrorCode Mat * A
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ left_multiply_transpose() [2/2]

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::left_multiply_transpose ( const DenseMatrix< T2 > &  A)

Left multiplies by the transpose of the matrix A which contains a different numerical type.

Definition at line 154 of file dense_matrix_impl.h.

155 {
156  //Check to see if we are doing (A^T)*A
157  if (this == &A)
158  {
159  //libmesh_here();
160  DenseMatrix<T> B(*this);
161 
162  // Simple but inefficient way
163  // return this->left_multiply_transpose(B);
164 
165  // More efficient, but more code way
166  // If A is mxn, the result will be a square matrix of Size n x n.
167  const unsigned int n_rows = A.m();
168  const unsigned int n_cols = A.n();
169 
170  // resize() *this and also zero out all entries.
171  this->resize(n_cols,n_cols);
172 
173  // Compute the lower-triangular part
174  for (unsigned int i=0; i<n_cols; ++i)
175  for (unsigned int j=0; j<=i; ++j)
176  for (unsigned int k=0; k<n_rows; ++k) // inner products are over n_rows
177  (*this)(i,j) += B(k,i)*B(k,j);
178 
179  // Copy lower-triangular part into upper-triangular part
180  for (unsigned int i=0; i<n_cols; ++i)
181  for (unsigned int j=i+1; j<n_cols; ++j)
182  (*this)(i,j) = (*this)(j,i);
183  }
184 
185  else
186  {
187  DenseMatrix<T> B(*this);
188 
189  this->resize (A.n(), B.n());
190 
191  libmesh_assert_equal_to (A.m(), B.m());
192  libmesh_assert_equal_to (this->m(), A.n());
193  libmesh_assert_equal_to (this->n(), B.n());
194 
195  const unsigned int m_s = A.n();
196  const unsigned int p_s = A.m();
197  const unsigned int n_s = this->n();
198 
199  // Do it this way because there is a
200  // decent chance (at least for constraint matrices)
201  // that A.transpose(i,k) = 0.
202  for (unsigned int i=0; i<m_s; i++)
203  for (unsigned int k=0; k<p_s; k++)
204  if (A.transpose(i,k) != 0.)
205  for (unsigned int j=0; j<n_s; j++)
206  (*this)(i,j) += A.transpose(i,k)*B(k,j);
207  }
208 }
unsigned int m() const
static PetscErrorCode Mat * A
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ linfty_norm()

template<typename T >
Real libMesh::DenseMatrix< T >::linfty_norm ( ) const
inline
Returns
The linfty-norm of the matrix, that is, the max row sum:

$ |M|_\infty = max_{all rows i} \sum_{all columns j} |M_ij| $,

This is the natural matrix norm that is compatible to the linfty-norm of vectors, i.e. $ |Mv|_\infty \leq |M|_\infty |v|_\infty $.

Definition at line 1018 of file dense_matrix.h.

1019 {
1020  libmesh_assert (this->_m);
1021  libmesh_assert (this->_n);
1022 
1023  Real rowsum = 0.;
1024  for (unsigned int j=0; j!=this->_n; j++)
1025  {
1026  rowsum += std::abs((*this)(0,j));
1027  }
1028  Real my_max = rowsum;
1029  for (unsigned int i=1; i!=this->_m; i++)
1030  {
1031  rowsum = 0.;
1032  for (unsigned int j=0; j!=this->_n; j++)
1033  {
1034  rowsum += std::abs((*this)(i,j));
1035  }
1036  my_max = (my_max > rowsum? my_max : rowsum);
1037  }
1038  return my_max;
1039 }
double abs(double a)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ lu_solve()

template<typename T>
void libMesh::DenseMatrix< T >::lu_solve ( const DenseVector< T > &  b,
DenseVector< T > &  x 
)

Solve the system Ax=b given the input vector b. Partial pivoting is performed by default in order to keep the algorithm stable to the effects of round-off error.

Definition at line 607 of file dense_matrix_impl.h.

Referenced by libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), and libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()().

609 {
610  // Check to be sure that the matrix is square before attempting
611  // an LU-solve. In general, one can compute the LU factorization of
612  // a non-square matrix, but:
613  //
614  // Overdetermined systems (m>n) have a solution only if enough of
615  // the equations are linearly-dependent.
616  //
617  // Underdetermined systems (m<n) typically have infinitely many
618  // solutions.
619  //
620  // We don't want to deal with either of these ambiguous cases here...
621  libmesh_assert_equal_to (this->m(), this->n());
622 
623  switch(this->_decomposition_type)
624  {
625  case NONE:
626  {
627  if (this->use_blas_lapack)
628  this->_lu_decompose_lapack();
629  else
630  this->_lu_decompose ();
631  break;
632  }
633 
634  case LU_BLAS_LAPACK:
635  {
636  // Already factored, just need to call back_substitute.
637  if (this->use_blas_lapack)
638  break;
639  }
640  libmesh_fallthrough();
641 
642  case LU:
643  {
644  // Already factored, just need to call back_substitute.
645  if (!(this->use_blas_lapack))
646  break;
647  }
648  libmesh_fallthrough();
649 
650  default:
651  libmesh_error_msg("Error! This matrix already has a different decomposition...");
652  }
653 
654  if (this->use_blas_lapack)
655  this->_lu_back_substitute_lapack (b, x);
656  else
657  this->_lu_back_substitute (b, x);
658 }
void _lu_back_substitute(const DenseVector< T > &b, DenseVector< T > &x) const
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
void _lu_back_substitute_lapack(const DenseVector< T > &b, DenseVector< T > &x)
unsigned int m() const
unsigned int n() const

◆ m()

template<typename T>
unsigned int libMesh::DenseMatrixBase< T >::m ( ) const
inlineinherited
Returns
The row-dimension of the matrix.

Definition at line 102 of file dense_matrix_base.h.

References libMesh::DenseMatrixBase< T >::_m.

Referenced by libMesh::DenseMatrix< Number >::_multiply_blas(), libMesh::DenseMatrix< Number >::_svd_solve_lapack(), libMesh::DenseMatrixBase< T >::add(), libMesh::DenseMatrix< Number >::add(), libMesh::PetscMatrix< T >::add_block_matrix(), libMesh::SparseMatrix< ValOut >::add_block_matrix(), libMesh::EigenSparseMatrix< T >::add_matrix(), libMesh::LaspackMatrix< T >::add_matrix(), libMesh::EpetraMatrix< T >::add_matrix(), libMesh::PetscMatrix< T >::add_matrix(), libMesh::DofMap::build_constraint_matrix(), libMesh::DofMap::build_constraint_matrix_and_vector(), libMesh::DofMap::constrain_element_dyad_matrix(), libMesh::DofMap::constrain_element_matrix(), libMesh::DofMap::constrain_element_matrix_and_vector(), libMesh::DofMap::constrain_element_vector(), libMesh::DofMap::extract_local_vector(), libMesh::DenseMatrix< Number >::get_transpose(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), libMesh::DofMap::heterogenously_constrain_element_vector(), libMesh::DenseMatrix< Number >::left_multiply(), libMesh::DenseMatrix< Number >::left_multiply_transpose(), libMesh::DofMap::max_constraint_error(), libMesh::DenseMatrixBase< T >::multiply(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::DenseMatrix< Number >::operator=(), libMesh::DenseMatrix< Number >::right_multiply(), and libMesh::DenseMatrix< Number >::right_multiply_transpose().

102 { return _m; }

◆ max()

template<typename T >
Real libMesh::DenseMatrix< T >::max ( ) const
inline
Returns
The maximum entry in the matrix, or the maximum real part in the case of complex numbers.

Definition at line 970 of file dense_matrix.h.

971 {
972  libmesh_assert (this->_m);
973  libmesh_assert (this->_n);
974  Real my_max = libmesh_real((*this)(0,0));
975 
976  for (unsigned int i=0; i!=this->_m; i++)
977  {
978  for (unsigned int j=0; j!=this->_n; j++)
979  {
980  Real current = libmesh_real((*this)(i,j));
981  my_max = (my_max > current? my_max : current);
982  }
983  }
984  return my_max;
985 }
T libmesh_real(T a)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ min()

template<typename T >
Real libMesh::DenseMatrix< T >::min ( ) const
inline
Returns
The minimum entry in the matrix, or the minimum real part in the case of complex numbers.

Definition at line 949 of file dense_matrix.h.

950 {
951  libmesh_assert (this->_m);
952  libmesh_assert (this->_n);
953  Real my_min = libmesh_real((*this)(0,0));
954 
955  for (unsigned int i=0; i!=this->_m; i++)
956  {
957  for (unsigned int j=0; j!=this->_n; j++)
958  {
959  Real current = libmesh_real((*this)(i,j));
960  my_min = (my_min < current? my_min : current);
961  }
962  }
963  return my_min;
964 }
T libmesh_real(T a)
DIE A HORRIBLE DEATH HERE typedef LIBMESH_DEFAULT_SCALAR_TYPE Real

◆ multiply()

template<typename T >
void libMesh::DenseMatrixBase< T >::multiply ( DenseMatrixBase< T > &  M1,
const DenseMatrixBase< T > &  M2,
const DenseMatrixBase< T > &  M3 
)
staticprotectedinherited

Helper function - Performs the computation M1 = M2 * M3 where: M1 = (m x n) M2 = (m x p) M3 = (p x n)

Definition at line 31 of file dense_matrix_base.C.

References libMesh::DenseMatrixBase< T >::el(), libMesh::DenseMatrixBase< T >::m(), and libMesh::DenseMatrixBase< T >::n().

34 {
35  // Assertions to make sure we have been
36  // passed matrices of the correct dimension.
37  libmesh_assert_equal_to (M1.m(), M2.m());
38  libmesh_assert_equal_to (M1.n(), M3.n());
39  libmesh_assert_equal_to (M2.n(), M3.m());
40 
41  const unsigned int m_s = M2.m();
42  const unsigned int p_s = M2.n();
43  const unsigned int n_s = M1.n();
44 
45  // Do it this way because there is a
46  // decent chance (at least for constraint matrices)
47  // that M3(k,j) = 0. when right-multiplying.
48  for (unsigned int k=0; k<p_s; k++)
49  for (unsigned int j=0; j<n_s; j++)
50  if (M3.el(k,j) != 0.)
51  for (unsigned int i=0; i<m_s; i++)
52  M1.el(i,j) += M2.el(i,k) * M3.el(k,j);
53 }

◆ n()

template<typename T>
unsigned int libMesh::DenseMatrixBase< T >::n ( ) const
inlineinherited
Returns
The column-dimension of the matrix.

Definition at line 107 of file dense_matrix_base.h.

References libMesh::DenseMatrixBase< T >::_n.

Referenced by libMesh::DenseMatrix< Number >::_multiply_blas(), libMesh::DenseMatrix< Number >::_svd_solve_lapack(), libMesh::DenseMatrixBase< T >::add(), libMesh::DenseMatrix< Number >::add(), libMesh::PetscMatrix< T >::add_block_matrix(), libMesh::SparseMatrix< ValOut >::add_block_matrix(), libMesh::EigenSparseMatrix< T >::add_matrix(), libMesh::LaspackMatrix< T >::add_matrix(), libMesh::EpetraMatrix< T >::add_matrix(), libMesh::PetscMatrix< T >::add_matrix(), libMesh::DofMap::build_constraint_matrix(), libMesh::DofMap::build_constraint_matrix_and_vector(), libMesh::DofMap::constrain_element_dyad_matrix(), libMesh::DofMap::constrain_element_matrix(), libMesh::DofMap::constrain_element_matrix_and_vector(), libMesh::DofMap::constrain_element_vector(), libMesh::DofMap::extract_local_vector(), libMesh::DenseMatrix< Number >::get_transpose(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), libMesh::DofMap::heterogenously_constrain_element_vector(), libMesh::DenseMatrix< Number >::left_multiply(), libMesh::DenseMatrix< Number >::left_multiply_transpose(), libMesh::DofMap::max_constraint_error(), libMesh::DenseMatrixBase< T >::multiply(), libMesh::WeightedPatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::PatchRecoveryErrorEstimator::EstimateError::operator()(), libMesh::DenseMatrix< Number >::operator=(), libMesh::DenseMatrix< Number >::right_multiply(), and libMesh::DenseMatrix< Number >::right_multiply_transpose().

107 { return _n; }

◆ operator!=()

template<typename T>
bool libMesh::DenseMatrix< T >::operator!= ( const DenseMatrix< T > &  mat) const
inline
Returns
true if mat is not exactly equal to this matrix, false otherwise.

Definition at line 912 of file dense_matrix.h.

913 {
914  for (std::size_t i=0; i<_val.size(); i++)
915  if (_val[i] != mat._val[i])
916  return true;
917 
918  return false;
919 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ operator()() [1/2]

template<typename T >
T libMesh::DenseMatrix< T >::operator() ( const unsigned int  i,
const unsigned int  j 
) const
inline
Returns
The (i,j) element of the matrix.

Definition at line 819 of file dense_matrix.h.

821 {
822  libmesh_assert_less (i*j, _val.size());
823  libmesh_assert_less (i, this->_m);
824  libmesh_assert_less (j, this->_n);
825 
826 
827  // return _val[(i) + (this->_m)*(j)]; // col-major
828  return _val[(i)*(this->_n) + (j)]; // row-major
829 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ operator()() [2/2]

template<typename T >
T & libMesh::DenseMatrix< T >::operator() ( const unsigned int  i,
const unsigned int  j 
)
inline
Returns
The (i,j) element of the matrix as a writable reference.

Definition at line 835 of file dense_matrix.h.

837 {
838  libmesh_assert_less (i*j, _val.size());
839  libmesh_assert_less (i, this->_m);
840  libmesh_assert_less (j, this->_n);
841 
842  //return _val[(i) + (this->_m)*(j)]; // col-major
843  return _val[(i)*(this->_n) + (j)]; // row-major
844 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ operator*=()

template<typename T>
DenseMatrix< T > & libMesh::DenseMatrix< T >::operator*= ( const T  factor)
inline

Multiplies every element in the matrix by factor.

Returns
A reference to *this.

Definition at line 871 of file dense_matrix.h.

872 {
873  this->scale(factor);
874  return *this;
875 }
void scale(const T factor)
Definition: dense_matrix.h:852

◆ operator+=()

template<typename T>
DenseMatrix< T > & libMesh::DenseMatrix< T >::operator+= ( const DenseMatrix< T > &  mat)
inline

Adds mat to this matrix.

Returns
A reference to *this.

Definition at line 925 of file dense_matrix.h.

926 {
927  for (std::size_t i=0; i<_val.size(); i++)
928  _val[i] += mat._val[i];
929 
930  return *this;
931 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ operator-=()

template<typename T>
DenseMatrix< T > & libMesh::DenseMatrix< T >::operator-= ( const DenseMatrix< T > &  mat)
inline

Subtracts mat from this matrix.

Returns
A reference to *this.

Definition at line 937 of file dense_matrix.h.

938 {
939  for (std::size_t i=0; i<_val.size(); i++)
940  _val[i] -= mat._val[i];
941 
942  return *this;
943 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ operator=() [1/3]

template<typename T>
DenseMatrix& libMesh::DenseMatrix< T >::operator= ( const DenseMatrix< T > &  )
default

◆ operator=() [2/3]

template<typename T>
DenseMatrix& libMesh::DenseMatrix< T >::operator= ( DenseMatrix< T > &&  )
default

◆ operator=() [3/3]

template<typename T >
template<typename T2 >
DenseMatrix< T > & libMesh::DenseMatrix< T >::operator= ( const DenseMatrix< T2 > &  other_matrix)
inline

Assignment-from-other-matrix-type operator.

Copies the dense matrix of type T2 into the present matrix. This is useful for copying real matrices into complex ones for further operations.

Returns
A reference to *this.

Definition at line 777 of file dense_matrix.h.

778 {
779  unsigned int mat_m = mat.m(), mat_n = mat.n();
780  this->resize(mat_m, mat_n);
781  for (unsigned int i=0; i<mat_m; i++)
782  for (unsigned int j=0; j<mat_n; j++)
783  (*this)(i,j) = mat(i,j);
784 
785  return *this;
786 }
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792

◆ operator==()

template<typename T>
bool libMesh::DenseMatrix< T >::operator== ( const DenseMatrix< T > &  mat) const
inline
Returns
true if mat is exactly equal to this matrix, false otherwise.

Definition at line 899 of file dense_matrix.h.

900 {
901  for (std::size_t i=0; i<_val.size(); i++)
902  if (_val[i] != mat._val[i])
903  return false;
904 
905  return true;
906 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ outer_product()

template<typename T>
void libMesh::DenseMatrix< T >::outer_product ( const DenseVector< T > &  a,
const DenseVector< T > &  b 
)

Computes the outer (dyadic) product of two vectors and stores in (*this).

The outer product of two real-valued vectors $\mathbf{a}$ and $\mathbf{b}$ is

\[ (\mathbf{a}\mathbf{b}^T)_{i,j} = \mathbf{a}_i \mathbf{b}_j . \]

The outer product of two complex-valued vectors $\mathbf{a}$ and $\mathbf{b}$ is

\[ (\mathbf{a}\mathbf{b}^H)_{i,j} = \mathbf{a}_i \mathbf{b}^*_j , \]

where $H$ denotes the conjugate transpose of the vector and $*$ denotes the complex conjugate.

Parameters
[in]aVector whose entries correspond to rows in the product matrix.
[in]bVector whose entries correspond to columns in the product matrix.

Definition at line 571 of file dense_matrix_impl.h.

573 {
574  const unsigned int m = a.size();
575  const unsigned int n = b.size();
576 
577  this->resize(m, n);
578  for (unsigned int i = 0; i < m; ++i)
579  for (unsigned int j = 0; j < n; ++j)
580  (*this)(i,j) = a(i) * libmesh_conj(b(j));
581 }
T libmesh_conj(T a)
unsigned int m() const
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ print()

template<typename T >
void libMesh::DenseMatrixBase< T >::print ( std::ostream &  os = libMesh::out) const
inherited

Pretty-print the matrix, by default to libMesh::out.

Definition at line 110 of file dense_matrix_base.C.

111 {
112  for (unsigned int i=0; i<this->m(); i++)
113  {
114  for (unsigned int j=0; j<this->n(); j++)
115  os << std::setw(8)
116  << this->el(i,j) << " ";
117 
118  os << std::endl;
119  }
120 
121  return;
122 }
unsigned int m() const
virtual T el(const unsigned int i, const unsigned int j) const =0
unsigned int n() const

◆ print_scientific()

template<typename T >
void libMesh::DenseMatrixBase< T >::print_scientific ( std::ostream &  os,
unsigned  precision = 8 
) const
inherited

Prints the matrix entries with more decimal places in scientific notation.

Definition at line 86 of file dense_matrix_base.C.

87 {
88  // save the initial format flags
89  std::ios_base::fmtflags os_flags = os.flags();
90 
91  // Print the matrix entries.
92  for (unsigned int i=0; i<this->m(); i++)
93  {
94  for (unsigned int j=0; j<this->n(); j++)
95  os << std::setw(15)
96  << std::scientific
97  << std::setprecision(precision)
98  << this->el(i,j) << " ";
99 
100  os << std::endl;
101  }
102 
103  // reset the original format flags
104  os.flags(os_flags);
105 }
unsigned int m() const
virtual T el(const unsigned int i, const unsigned int j) const =0
unsigned int n() const

◆ resize()

template<typename T >
void libMesh::DenseMatrix< T >::resize ( const unsigned int  new_m,
const unsigned int  new_n 
)
inline

Resize the matrix. Will never free memory, but may allocate more. Sets all elements to 0.

Definition at line 792 of file dense_matrix.h.

Referenced by libMesh::DenseMatrix< Number >::_evd_lapack(), libMesh::DenseMatrix< Number >::_svd_lapack(), libMesh::HPCoarsenTest::add_projection(), libMesh::DofMap::build_constraint_matrix(), libMesh::DofMap::build_constraint_matrix_and_vector(), libMesh::FEGenericBase< FEOutputType< T >::type >::coarsened_dof_values(), libMesh::FEGenericBase< FEOutputType< T >::type >::compute_periodic_constraints(), libMesh::FEGenericBase< FEOutputType< T >::type >::compute_proj_constraints(), libMesh::DenseMatrix< Number >::get_principal_submatrix(), libMesh::DenseMatrix< Number >::get_transpose(), libMesh::DGFEMContext::neighbor_side_fe_reinit(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()(), libMesh::BoundaryProjectSolution::operator()(), libMesh::FEMContext::pre_fe_reinit(), libMesh::DenseMatrix< Number >::resize(), and libMesh::HPCoarsenTest::select_refinement().

794 {
795  _val.resize(new_m*new_n);
796 
797  this->_m = new_m;
798  this->_n = new_n;
799 
800  // zero and set decomposition_type to NONE
801  this->zero();
802 }
virtual void zero() override
Definition: dense_matrix.h:808
std::vector< T > _val
Definition: dense_matrix.h:532

◆ right_multiply() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::right_multiply ( const DenseMatrixBase< T > &  M3)
overridevirtual

Performs the operation: (*this) <- (*this) * M3

Implements libMesh::DenseMatrixBase< T >.

Definition at line 213 of file dense_matrix_impl.h.

Referenced by libMesh::DofMap::build_constraint_matrix(), libMesh::DofMap::build_constraint_matrix_and_vector(), libMesh::DofMap::constrain_element_matrix(), libMesh::DofMap::constrain_element_matrix_and_vector(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), and libMesh::FESubdivision::init_shape_functions().

214 {
215  if (this->use_blas_lapack)
216  this->_multiply_blas(M3, RIGHT_MULTIPLY);
217  else
218  {
219  // (*this) <- M3 * (*this)
220  // Where:
221  // (*this) = (m x n),
222  // M2 = (m x p),
223  // M3 = (p x n)
224 
225  // M2 is a copy of *this before it gets resize()d
226  DenseMatrix<T> M2(*this);
227 
228  // Resize *this so that the result can fit
229  this->resize (M2.m(), M3.n());
230 
231  this->multiply(*this, M2, M3);
232  }
233 }
void _multiply_blas(const DenseMatrixBase< T > &other, _BLAS_Multiply_Flag flag)
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
static void multiply(DenseMatrixBase< T > &M1, const DenseMatrixBase< T > &M2, const DenseMatrixBase< T > &M3)

◆ right_multiply() [2/2]

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::right_multiply ( const DenseMatrixBase< T2 > &  M2)

Right multiplies by the matrix M2 of different type

Definition at line 239 of file dense_matrix_impl.h.

240 {
241  // (*this) <- M3 * (*this)
242  // Where:
243  // (*this) = (m x n),
244  // M2 = (m x p),
245  // M3 = (p x n)
246 
247  // M2 is a copy of *this before it gets resize()d
248  DenseMatrix<T> M2(*this);
249 
250  // Resize *this so that the result can fit
251  this->resize (M2.m(), M3.n());
252 
253  this->multiply(*this, M2, M3);
254 }
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
static void multiply(DenseMatrixBase< T > &M1, const DenseMatrixBase< T > &M2, const DenseMatrixBase< T > &M3)

◆ right_multiply_transpose() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::right_multiply_transpose ( const DenseMatrix< T > &  A)

Right multiplies by the transpose of the matrix A

Definition at line 260 of file dense_matrix_impl.h.

261 {
262  if (this->use_blas_lapack)
264  else
265  {
266  //Check to see if we are doing B*(B^T)
267  if (this == &B)
268  {
269  //libmesh_here();
270  DenseMatrix<T> A(*this);
271 
272  // Simple but inefficient way
273  // return this->right_multiply_transpose(A);
274 
275  // More efficient, more code
276  // If B is mxn, the result will be a square matrix of Size m x m.
277  const unsigned int n_rows = B.m();
278  const unsigned int n_cols = B.n();
279 
280  // resize() *this and also zero out all entries.
281  this->resize(n_rows,n_rows);
282 
283  // Compute the lower-triangular part
284  for (unsigned int i=0; i<n_rows; ++i)
285  for (unsigned int j=0; j<=i; ++j)
286  for (unsigned int k=0; k<n_cols; ++k) // inner products are over n_cols
287  (*this)(i,j) += A(i,k)*A(j,k);
288 
289  // Copy lower-triangular part into upper-triangular part
290  for (unsigned int i=0; i<n_rows; ++i)
291  for (unsigned int j=i+1; j<n_rows; ++j)
292  (*this)(i,j) = (*this)(j,i);
293  }
294 
295  else
296  {
297  DenseMatrix<T> A(*this);
298 
299  this->resize (A.m(), B.m());
300 
301  libmesh_assert_equal_to (A.n(), B.n());
302  libmesh_assert_equal_to (this->m(), A.m());
303  libmesh_assert_equal_to (this->n(), B.m());
304 
305  const unsigned int m_s = A.m();
306  const unsigned int p_s = A.n();
307  const unsigned int n_s = this->n();
308 
309  // Do it this way because there is a
310  // decent chance (at least for constraint matrices)
311  // that B.transpose(k,j) = 0.
312  for (unsigned int j=0; j<n_s; j++)
313  for (unsigned int k=0; k<p_s; k++)
314  if (B.transpose(k,j) != 0.)
315  for (unsigned int i=0; i<m_s; i++)
316  (*this)(i,j) += A(i,k)*B.transpose(k,j);
317  }
318  }
319 }
unsigned int m() const
void _multiply_blas(const DenseMatrixBase< T > &other, _BLAS_Multiply_Flag flag)
static PetscErrorCode Mat * A
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ right_multiply_transpose() [2/2]

template<typename T >
template<typename T2 >
void libMesh::DenseMatrix< T >::right_multiply_transpose ( const DenseMatrix< T2 > &  A)

Right multiplies by the transpose of the matrix A which contains a different numerical type.

Definition at line 325 of file dense_matrix_impl.h.

326 {
327  //Check to see if we are doing B*(B^T)
328  if (this == &B)
329  {
330  //libmesh_here();
331  DenseMatrix<T> A(*this);
332 
333  // Simple but inefficient way
334  // return this->right_multiply_transpose(A);
335 
336  // More efficient, more code
337  // If B is mxn, the result will be a square matrix of Size m x m.
338  const unsigned int n_rows = B.m();
339  const unsigned int n_cols = B.n();
340 
341  // resize() *this and also zero out all entries.
342  this->resize(n_rows,n_rows);
343 
344  // Compute the lower-triangular part
345  for (unsigned int i=0; i<n_rows; ++i)
346  for (unsigned int j=0; j<=i; ++j)
347  for (unsigned int k=0; k<n_cols; ++k) // inner products are over n_cols
348  (*this)(i,j) += A(i,k)*A(j,k);
349 
350  // Copy lower-triangular part into upper-triangular part
351  for (unsigned int i=0; i<n_rows; ++i)
352  for (unsigned int j=i+1; j<n_rows; ++j)
353  (*this)(i,j) = (*this)(j,i);
354  }
355 
356  else
357  {
358  DenseMatrix<T> A(*this);
359 
360  this->resize (A.m(), B.m());
361 
362  libmesh_assert_equal_to (A.n(), B.n());
363  libmesh_assert_equal_to (this->m(), A.m());
364  libmesh_assert_equal_to (this->n(), B.m());
365 
366  const unsigned int m_s = A.m();
367  const unsigned int p_s = A.n();
368  const unsigned int n_s = this->n();
369 
370  // Do it this way because there is a
371  // decent chance (at least for constraint matrices)
372  // that B.transpose(k,j) = 0.
373  for (unsigned int j=0; j<n_s; j++)
374  for (unsigned int k=0; k<p_s; k++)
375  if (B.transpose(k,j) != 0.)
376  for (unsigned int i=0; i<m_s; i++)
377  (*this)(i,j) += A(i,k)*B.transpose(k,j);
378  }
379 }
unsigned int m() const
static PetscErrorCode Mat * A
void resize(const unsigned int new_m, const unsigned int new_n)
Definition: dense_matrix.h:792
unsigned int n() const

◆ scale()

template<typename T>
void libMesh::DenseMatrix< T >::scale ( const T  factor)
inline

Multiplies every element in the matrix by factor.

Definition at line 852 of file dense_matrix.h.

853 {
854  for (std::size_t i=0; i<_val.size(); i++)
855  _val[i] *= factor;
856 }
std::vector< T > _val
Definition: dense_matrix.h:532

◆ scale_column()

template<typename T>
void libMesh::DenseMatrix< T >::scale_column ( const unsigned int  col,
const T  factor 
)
inline

Multiplies every element in the column col matrix by factor.

Definition at line 861 of file dense_matrix.h.

862 {
863  for (unsigned int i=0; i<this->m(); i++)
864  (*this)(i, col) *= factor;
865 }
unsigned int m() const

◆ svd() [1/2]

template<typename T >
void libMesh::DenseMatrix< T >::svd ( DenseVector< Real > &  sigma)

Compute the singular value decomposition of the matrix. On exit, sigma holds all of the singular values (in descending order).

The implementation uses PETSc's interface to BLAS/LAPACK. If this is not available, this function throws an error.

Definition at line 795 of file dense_matrix_impl.h.

796 {
797  // We use the LAPACK svd implementation
798  _svd_lapack(sigma);
799 }
void _svd_lapack(DenseVector< Real > &sigma)

◆ svd() [2/2]

template<typename T >
void libMesh::DenseMatrix< T >::svd ( DenseVector< Real > &  sigma,
DenseMatrix< Number > &  U,
DenseMatrix< Number > &  VT 
)

Compute the "reduced" singular value decomposition of the matrix. On exit, sigma holds all of the singular values (in descending order), U holds the left singular vectors, and VT holds the transpose of the right singular vectors. In the reduced SVD, U has min(m,n) columns and VT has min(m,n) rows. (In the "full" SVD, U and VT would be square.)

The implementation uses PETSc's interface to BLAS/LAPACK. If this is not available, this function throws an error.

Definition at line 803 of file dense_matrix_impl.h.

806 {
807  // We use the LAPACK svd implementation
808  _svd_lapack(sigma, U, VT);
809 }
void _svd_lapack(DenseVector< Real > &sigma)

◆ svd_solve()

template<typename T>
void libMesh::DenseMatrix< T >::svd_solve ( const DenseVector< T > &  rhs,
DenseVector< T > &  x,
Real  rcond = std::numeric_limits<Real>::epsilon() 
) const

Solve the system of equations $ A x = rhs $ for $ x $ in the least-squares sense. $ A $ may be non-square and/or rank-deficient. You can control which singular values are treated as zero by changing the "rcond" parameter. Singular values S(i) for which S(i) <= rcond*S(1) are treated as zero for purposes of the solve. Passing a negative number for rcond forces a "machine precision" value to be used instead.

This function is marked const, since due to various implementation details, we do not need to modify the contents of A in order to compute the SVD (a copy is made internally instead).

Requires PETSc >= 3.1 since this was the first version to provide the LAPACKgelss_ wrapper.

Definition at line 814 of file dense_matrix_impl.h.

817 {
818  _svd_solve_lapack(rhs, x, rcond);
819 }
void _svd_solve_lapack(const DenseVector< T > &rhs, DenseVector< T > &x, Real rcond) const

◆ swap()

template<typename T>
void libMesh::DenseMatrix< T >::swap ( DenseMatrix< T > &  other_matrix)
inline

STL-like swap method

Definition at line 762 of file dense_matrix.h.

Referenced by libMesh::EulerSolver::_general_residual(), libMesh::Euler2Solver::_general_residual(), and libMesh::NewmarkSolver::_general_residual().

763 {
764  std::swap(this->_m, other_matrix._m);
765  std::swap(this->_n, other_matrix._n);
766  _val.swap(other_matrix._val);
768  _decomposition_type = other_matrix._decomposition_type;
769  other_matrix._decomposition_type = _temp;
770 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
void swap(Iterator &lhs, Iterator &rhs)
std::vector< T > _val
Definition: dense_matrix.h:532

◆ transpose()

template<typename T >
T libMesh::DenseMatrix< T >::transpose ( const unsigned int  i,
const unsigned int  j 
) const
inline
Returns
The (i,j) element of the transposed matrix.

Definition at line 1045 of file dense_matrix.h.

Referenced by libMesh::DenseMatrix< Number >::right_multiply_transpose().

1047 {
1048  // Implement in terms of operator()
1049  return (*this)(j,i);
1050 }

◆ vector_mult() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::vector_mult ( DenseVector< T > &  dest,
const DenseVector< T > &  arg 
) const

Performs the matrix-vector multiplication, dest := (*this) * arg.

Definition at line 385 of file dense_matrix_impl.h.

Referenced by libMesh::FEMap::compute_single_point_map(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), and libMesh::DofMap::heterogenously_constrain_element_vector().

387 {
388  // Make sure the input sizes are compatible
389  libmesh_assert_equal_to (this->n(), arg.size());
390 
391  // Resize and clear dest.
392  // Note: DenseVector::resize() also zeros the vector.
393  dest.resize(this->m());
394 
395  // Short-circuit if the matrix is empty
396  if(this->m() == 0 || this->n() == 0)
397  return;
398 
399  if (this->use_blas_lapack)
400  this->_matvec_blas(1., 0., dest, arg);
401  else
402  {
403  const unsigned int n_rows = this->m();
404  const unsigned int n_cols = this->n();
405 
406  for (unsigned int i=0; i<n_rows; i++)
407  for (unsigned int j=0; j<n_cols; j++)
408  dest(i) += (*this)(i,j)*arg(j);
409  }
410 }
unsigned int m() const
void _matvec_blas(T alpha, T beta, DenseVector< T > &dest, const DenseVector< T > &arg, bool trans=false) const
unsigned int n() const

◆ vector_mult() [2/2]

template<typename T>
template<typename T2 >
void libMesh::DenseMatrix< T >::vector_mult ( DenseVector< typename CompareTypes< T, T2 >::supertype > &  dest,
const DenseVector< T2 > &  arg 
) const

Performs the matrix-vector multiplication, dest := (*this) * arg on mixed types

Definition at line 416 of file dense_matrix_impl.h.

418 {
419  // Make sure the input sizes are compatible
420  libmesh_assert_equal_to (this->n(), arg.size());
421 
422  // Resize and clear dest.
423  // Note: DenseVector::resize() also zeros the vector.
424  dest.resize(this->m());
425 
426  // Short-circuit if the matrix is empty
427  if (this->m() == 0 || this->n() == 0)
428  return;
429 
430  const unsigned int n_rows = this->m();
431  const unsigned int n_cols = this->n();
432 
433  for (unsigned int i=0; i<n_rows; i++)
434  for (unsigned int j=0; j<n_cols; j++)
435  dest(i) += (*this)(i,j)*arg(j);
436 }
unsigned int m() const
unsigned int n() const

◆ vector_mult_add() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::vector_mult_add ( DenseVector< T > &  dest,
const T  factor,
const DenseVector< T > &  arg 
) const

Performs the scaled matrix-vector multiplication, dest += factor * (*this) * arg.

Definition at line 511 of file dense_matrix_impl.h.

Referenced by libMesh::DofMap::build_constraint_matrix_and_vector().

514 {
515  // Short-circuit if the matrix is empty
516  if (this->m() == 0)
517  {
518  dest.resize(0);
519  return;
520  }
521 
522  if (this->use_blas_lapack)
523  this->_matvec_blas(factor, 1., dest, arg);
524  else
525  {
526  DenseVector<T> temp(arg.size());
527  this->vector_mult(temp, arg);
528  dest.add(factor, temp);
529  }
530 }
unsigned int m() const
void _matvec_blas(T alpha, T beta, DenseVector< T > &dest, const DenseVector< T > &arg, bool trans=false) const
void vector_mult(DenseVector< T > &dest, const DenseVector< T > &arg) const

◆ vector_mult_add() [2/2]

template<typename T>
template<typename T2 , typename T3 >
void libMesh::DenseMatrix< T >::vector_mult_add ( DenseVector< typename CompareTypes< T, typename CompareTypes< T2, T3 >::supertype >::supertype > &  dest,
const T2  factor,
const DenseVector< T3 > &  arg 
) const

Performs the scaled matrix-vector multiplication, dest += factor * (*this) * arg. on mixed types

Definition at line 536 of file dense_matrix_impl.h.

539 {
540  // Short-circuit if the matrix is empty
541  if (this->m() == 0)
542  {
543  dest.resize(0);
544  return;
545  }
546 
547  DenseVector<typename CompareTypes<T,T3>::supertype>
548  temp(arg.size());
549  this->vector_mult(temp, arg);
550  dest.add(factor, temp);
551 }
unsigned int m() const
void vector_mult(DenseVector< T > &dest, const DenseVector< T > &arg) const

◆ vector_mult_transpose() [1/2]

template<typename T>
void libMesh::DenseMatrix< T >::vector_mult_transpose ( DenseVector< T > &  dest,
const DenseVector< T > &  arg 
) const

Performs the matrix-vector multiplication, dest := (*this)^T * arg.

Definition at line 441 of file dense_matrix_impl.h.

Referenced by libMesh::DofMap::constrain_element_dyad_matrix(), libMesh::DofMap::constrain_element_matrix_and_vector(), libMesh::DofMap::constrain_element_vector(), libMesh::DofMap::heterogenously_constrain_element_matrix_and_vector(), and libMesh::DofMap::heterogenously_constrain_element_vector().

443 {
444  // Make sure the input sizes are compatible
445  libmesh_assert_equal_to (this->m(), arg.size());
446 
447  // Resize and clear dest.
448  // Note: DenseVector::resize() also zeros the vector.
449  dest.resize(this->n());
450 
451  // Short-circuit if the matrix is empty
452  if (this->m() == 0)
453  return;
454 
455  if (this->use_blas_lapack)
456  {
457  this->_matvec_blas(1., 0., dest, arg, /*trans=*/true);
458  }
459  else
460  {
461  const unsigned int n_rows = this->m();
462  const unsigned int n_cols = this->n();
463 
464  // WORKS
465  // for (unsigned int j=0; j<n_cols; j++)
466  // for (unsigned int i=0; i<n_rows; i++)
467  // dest(j) += (*this)(i,j)*arg(i);
468 
469  // ALSO WORKS, (i,j) just swapped
470  for (unsigned int i=0; i<n_cols; i++)
471  for (unsigned int j=0; j<n_rows; j++)
472  dest(i) += (*this)(j,i)*arg(j);
473  }
474 }
unsigned int m() const
void _matvec_blas(T alpha, T beta, DenseVector< T > &dest, const DenseVector< T > &arg, bool trans=false) const
unsigned int n() const

◆ vector_mult_transpose() [2/2]

template<typename T>
template<typename T2 >
void libMesh::DenseMatrix< T >::vector_mult_transpose ( DenseVector< typename CompareTypes< T, T2 >::supertype > &  dest,
const DenseVector< T2 > &  arg 
) const

Performs the matrix-vector multiplication, dest := (*this)^T * arg. on mixed types

Definition at line 480 of file dense_matrix_impl.h.

482 {
483  // Make sure the input sizes are compatible
484  libmesh_assert_equal_to (this->m(), arg.size());
485 
486  // Resize and clear dest.
487  // Note: DenseVector::resize() also zeros the vector.
488  dest.resize(this->n());
489 
490  // Short-circuit if the matrix is empty
491  if (this->m() == 0)
492  return;
493 
494  const unsigned int n_rows = this->m();
495  const unsigned int n_cols = this->n();
496 
497  // WORKS
498  // for (unsigned int j=0; j<n_cols; j++)
499  // for (unsigned int i=0; i<n_rows; i++)
500  // dest(j) += (*this)(i,j)*arg(i);
501 
502  // ALSO WORKS, (i,j) just swapped
503  for (unsigned int i=0; i<n_cols; i++)
504  for (unsigned int j=0; j<n_rows; j++)
505  dest(i) += (*this)(j,i)*arg(j);
506 }
unsigned int m() const
unsigned int n() const

◆ zero()

template<typename T >
void libMesh::DenseMatrix< T >::zero ( )
inlineoverridevirtual

Set every element in the matrix to 0. You must redefine what you mean by zeroing the matrix since it depends on how your values are stored.

Implements libMesh::DenseMatrixBase< T >.

Definition at line 808 of file dense_matrix.h.

Referenced by libMesh::HPCoarsenTest::add_projection(), libMesh::FEMSystem::assembly(), libMesh::FEGenericBase< FEOutputType< T >::type >::coarsened_dof_values(), libMesh::GenericProjector< FFunctor, GFunctor, FValue, ProjectionAction >::operator()(), libMesh::BoundaryProjectSolution::operator()(), and libMesh::HPCoarsenTest::select_refinement().

809 {
811 
812  std::fill (_val.begin(), _val.end(), static_cast<T>(0));
813 }
DecompositionType _decomposition_type
Definition: dense_matrix.h:582
std::vector< T > _val
Definition: dense_matrix.h:532

Member Data Documentation

◆ _decomposition_type

template<typename T>
DecompositionType libMesh::DenseMatrix< T >::_decomposition_type
private

This flag keeps track of which type of decomposition has been performed on the matrix.

Definition at line 582 of file dense_matrix.h.

Referenced by libMesh::DenseMatrix< Number >::swap().

◆ _m

template<typename T>
unsigned int libMesh::DenseMatrixBase< T >::_m
protectedinherited

The row dimension.

Definition at line 169 of file dense_matrix_base.h.

Referenced by libMesh::DenseMatrixBase< T >::m(), and libMesh::DenseMatrix< Number >::swap().

◆ _n

template<typename T>
unsigned int libMesh::DenseMatrixBase< T >::_n
protectedinherited

The column dimension.

Definition at line 174 of file dense_matrix_base.h.

Referenced by libMesh::DenseMatrixBase< T >::n(), and libMesh::DenseMatrix< Number >::swap().

◆ _pivots

template<typename T>
std::vector<pivot_index_t> libMesh::DenseMatrix< T >::_pivots
private

Definition at line 672 of file dense_matrix.h.

◆ _val

◆ use_blas_lapack

template<typename T>
bool libMesh::DenseMatrix< T >::use_blas_lapack

Computes the inverse of the dense matrix (assuming it is invertible) by first computing the LU decomposition and then performing multiple back substitution steps. Follows the algorithm from Numerical Recipes in C that is available on the web.

This routine is commented out since it is not really a memory- or computationally- efficient implementation. Also, you typically don't need the actual inverse for anything, and can use something like lu_solve() instead. Run-time selectable option to turn on/off BLAS support. This was primarily used for testing purposes, and could be removed...

Definition at line 525 of file dense_matrix.h.


The documentation for this class was generated from the following files: